Non-contact photoacoustic tomography and ultrasonography for brain imaging

被引:0
作者
Rousseau, Guy [1 ]
Blouin, Alain [1 ]
Monchalin, Jean-Pierre [1 ]
机构
[1] Natl Res Council Canada, Inst Ind Mat, Boucherville, PQ J4B 6Y4, Canada
来源
PHOTONIC THERAPEUTICS AND DIAGNOSTICS VIII, PTS 1 AND 2 | 2012年 / 8207卷
关键词
biomedical imaging; photoacoustic tomography; ultrasonography; non-contact detection; neurosurgery; brain; blood oxygenation; ischemia; OPTICAL-DETECTION; INTERFEROMETER; ULTRASOUND; SURFACE;
D O I
10.1117/12.906871
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photoacoustic tomography (PAT) and ultrasonography (US) of biological tissues usually rely on transducer arrays for the detection of ultrasound. Obtaining the best sensitivity requires a physical contact with the tissue using an intermediate coupling fluid (water or gel). This type of contact is a major drawback for several applications such as neurosurgery. Laser-ultrasonics is an established optical technique for the non-contact generation and detection of ultrasound in industrial materials. In this paper, the non-contact detection scheme used in laser-ultrasonics is adapted to allow probing of ultrasound in biological tissues while remaining below laser exposure safety limits. Both non-contact PAT (NCPAT) and non-contact US (NCUS) are demonstrated experimentally using a single-frequency detection laser emitting suitably shaped pulses and a confocal Fabry-Perot interferometer. It is shown that an acceptable sensitivity is obtained while remaining below the maximum permissible exposure (MPE) of biological tissues. Results obtained ex vivo with a calf brain specimen show that sub-mm endogenous and exogenous inclusions can be detected at depths exceeding 1 cm. When fully developed, the technique could be a unique diagnostic tool in neurosurgery providing deep imaging of blood vessels, blood clots and blood oxygenation.
引用
收藏
页数:7
相关论文
共 21 条
[1]  
[Anonymous], 2007, Z13612007 ANSI LAS I
[2]   Biomedical photoacoustic imaging [J].
Beard, Paul .
INTERFACE FOCUS, 2011, 1 (04) :602-631
[3]   Remote photoacoustic imaging on solid material using a two-wave mixing interferometer [J].
Berer, Thomas ;
Hochreiner, Armin ;
Zamiri, Saeid ;
Burgholzer, Peter .
OPTICS LETTERS, 2010, 35 (24) :4151-4153
[4]  
Blouin A, 2007, AIP CONF PROC, V894, P193, DOI 10.1063/1.2717973
[5]   DETECTION OF ULTRASONIC MOTION OF A SCATTERING SURFACE BY 2-WAVE MIXING IN A PHOTOREFRACTIVE GAAS CRYSTAL [J].
BLOUIN, A ;
MONCHALIN, JP .
APPLIED PHYSICS LETTERS, 1994, 65 (08) :932-934
[6]  
Davies J, 2006, AIP CONF PROC, V820, P142
[7]   BROAD-BAND OPTICAL-DETECTION OF ULTRASOUND BY 2-WAVE MIXING IN A PHOTOREFRACTIVE CRYSTAL [J].
ING, RK ;
MONCHALIN, JP .
APPLIED PHYSICS LETTERS, 1991, 59 (25) :3233-3235
[8]   Photoacoustic ophthalmoscopy for in vivo retinal imaging [J].
Jiao, Shuliang ;
Jiang, Minshan ;
Hu, Jianming ;
Fawzi, Amani ;
Zhou, Qifa ;
Shung, K. Kirk ;
Puliafito, Carmen A. ;
Zhang, Hao F. .
OPTICS EXPRESS, 2010, 18 (04) :3967-3972
[9]   Feasibility of noncontact piezoelectric detection of photoacoustic signals in tissue-mimicking phantoms [J].
Kolkman, Roy G. M. ;
Blomme, Erik ;
Cool, Tijl ;
Bilcke, Mattias ;
van Leeuwen, Ton G. ;
Steenbergen, Wiendelt ;
Grimbergen, Kees A. ;
den Heeten, Gerard J. .
JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (05)
[10]   OPTICAL-DETECTION OF ULTRASOUND AT A DISTANCE USING A CONFOCAL FABRY-PEROT-INTERFEROMETER [J].
MONCHALIN, JP .
APPLIED PHYSICS LETTERS, 1985, 47 (01) :14-16