A class of linear codes of length 2 over finite chain rings

被引:19
作者
Cao, Yonglin [1 ]
Cao, Yuan [1 ,2 ]
Dinh, Hai Q. [3 ,4 ]
Fu, Fang-Wei [5 ,6 ]
Gao, Jian [1 ]
Sriboonchitta, Songsak [7 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255091, Shandong, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China
[3] Ton Duc Thang Univ, Div Computat Math & Engn, Inst Computat Sci, Ho Chi Minh City, Vietnam
[4] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[5] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[6] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[7] Chiang Mai Univ, Fac Econ, Chiang Mai 52000, Thailand
基金
中国国家自然科学基金;
关键词
Linear codes; constacyclic codes; generator matrix; finite chain rings; PLUS ALPHA-U(2))-CONSTACYCLIC CODES; ROOT CONSTACYCLIC CODES; COMPLETE CLASSIFICATION; NEGACYCLIC CODES; CYCLIC CODES;
D O I
10.1142/S0219498820501030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F-pm be a finite field of cardinality p(m), where p is an odd prime, k, lambda be positive integers satisfying lambda >= 2, and denote K= Fp(m) [x]/ < f (x)(lambda pk)>, where f (x) is an irreducible polynomial in F-pm [a]. In this note, for any fixed invertible element omega is an element of K-x, we present all distinct linear codes S over K of length 2 satisfying the condition: (omega f (x)p(k) a(1), a(0)) is an element of S for all (a(0), a(1)) is an element of S. This conclusion can be used to determine the structure of (delta + alpha u(2))-constacyclic codes over the finite chain ring F-pm [u]/< u(2 lambda)> of length np(k) for any positive integer n satisfying gcd(p, n) = 1.
引用
收藏
页数:15
相关论文
共 23 条
[1]   Constacyclic codes over F2 + uF2 [J].
Abualrub, Taher ;
Siap, Irfan .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2009, 346 (05) :520-529
[2]   On (1-u)-cyclic codes over Fpk + uFpk [J].
Amarra, Maria Carmen V. ;
Nemenzo, Fidel R. .
APPLIED MATHEMATICS LETTERS, 2008, 21 (11) :1129-1133
[3]  
Cao Y, 2016, DISCRETE MATH
[4]   CONSTACYCLIC CODES OF LENGTH np8 OVER Fpm + uFpm [J].
Cao, Yonglin ;
Cao, Yuan ;
Dinh, Hai Q. ;
Fu, Fang-Wei ;
Gao, Jian ;
Sriboonchitta, Songsak .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2018, 12 (02) :231-262
[5]   On constacyclic codes over finite chain rings [J].
Cao, Yonglin .
FINITE FIELDS AND THEIR APPLICATIONS, 2013, 24 :124-135
[6]   A class of repeated-root constacyclic codes over Fpm[u]/⟨ue⟩ of Type 2 [J].
Cao, Yuan ;
Cao, Yonglin ;
Dinh, Hai Q. ;
Fu, Fang-Wei ;
Gao, Jian ;
Sriboonchitta, Songsak .
FINITE FIELDS AND THEIR APPLICATIONS, 2019, 55 :238-267
[7]  
Cao Y, 2018, APPL ALGEBR ENG COMM, V29, P13, DOI 10.1007/s00200-017-0328-9
[8]   Complete classification of (δ plus αu2)-constacyclic codes over F2m[u]/⟨u4⟩ of oddly even length [J].
Cao, Yuan ;
Cao, Yonglin ;
Ma, Fanghui .
DISCRETE MATHEMATICS, 2017, 340 (12) :2840-2852
[9]   On a Class of (δ plus αu2)-Constacyclic Codes over Fq[u] =/⟨u4⟩ [J].
Cao, Yuan ;
Cao, Yonglin ;
Gao, Jian .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (07) :1438-1445
[10]   Cyclic and negacyclic codes of length 4ps over Fpm + uFpm [J].
Dinh, Hai Q. ;
Sharma, Anuradha ;
Rani, Saroj ;
Sriboonchitta, Songsak .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (09)