WEIGHTED Lp BOUNDEDNESS OF CARLESON TYPE MAXIMAL OPERATORS

被引:6
作者
Ding, Yong [1 ]
Liu, Honghai [2 ]
机构
[1] Beijing Normal Univ, Minist Educ China, Sch Math Sci, Lab Math & Complex Syst BNU, Beijing 100875, Peoples R China
[2] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Peoples R China
关键词
Carleson operator; homogeneous kernel; L-q-Dini condition; A(p) weight; NORM INEQUALITIES; INTEGRALS;
D O I
10.1090/S0002-9939-2011-11110-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2001, E. M. Stein and S. Wainger gave the L-p boundedness of the Carleson type maximal operator T*, which is defined by T* f(x) = sup(lambda) vertical bar integral(Rn) e(iP lambda(y)) K(y)f(x - y)dy vertical bar. In this paper, the authors show that if K is a homogeneous kernel, i.e. K(y) = Omega(y')vertical bar y vertical bar(-n), then Stein-Wainger's result still holds on the weighted L-p spaces when Omega satisfies only an L-p-Dini condition for some 1 < q <= infinity.
引用
收藏
页码:2739 / 2751
页数:13
相关论文
共 14 条
[1]  
Calderon A. P., 1967, P S PURE MATH, P56
[2]  
Carleson L., 1966, ACTA MATH, V111, P361
[3]  
Colzani L., 1982, PhD Thesis
[4]   LP BOUNDEDNESS OF CARLESON TYPE MAXIMAL OPERATORS WITH NONSMOOTH KERNELS [J].
Ding, Yong ;
Liu, Honghai .
TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (02) :255-267
[5]   WEIGHTED NORM INEQUALITIES FOR HOMOGENEOUS SINGULAR-INTEGRALS [J].
DUOANDIKOETXEA, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 336 (02) :869-880
[6]  
Garcfa-Cuerva J., 1985, MATH STUDIES, V116
[7]  
Hunt R. A., 1967, P C HELD SO ILL U ED
[8]   WEIGHTED NORM INEQUALITY FOR FOURIER-SERIES [J].
HUNT, RA ;
YOUNG, WS .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (02) :274-277
[9]   RESULTS ON WEIGHTED NORM INEQUALITIES FOR MULTIPLIERS [J].
KURTZ, DS ;
WHEEDEN, RL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 255 (NOV) :343-362
[10]   A Littlewood-Paley inequality for the Carleson operator [J].
Prestini, E ;
Sjölin, P .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2000, 6 (05) :457-466