Toward Eco-Friendly and Highly Efficient Solar Water Splitting Using In2S3/Anatase/Rutile TiO2 Dual-Staggered-Heterojunction Nanodendrite Array Photoanode

被引:37
作者
Yang, Jih-Sheng [1 ]
Wu, Jih-Jen [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 701, Taiwan
关键词
photoelectrochemical water splitting; hierarchical TiO2 nanodendrite array; neutral electrolyte; seawater; charge separation; HYDROGEN-PRODUCTION; NANOTUBE ARRAYS; NANOWIRE ARRAYS; DEPENDENCE; OXIDATION; PH; CELLS; ELECTROLYTES; OXIDE;
D O I
10.1021/acsami.7b19139
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The TiO2-based heterojunction nanodendrite (ND) array composed of anatase nanoparticles (ANPs) on the surface of the rutile ND (RND) array is selected as the model photoanode to demonstrate the strategies toward eco-friendly and efficient solar water splitting using neutral electrolyte and seawater. Compared with the performances in alkaline electrolyte, a non-negligible potential drop across the electrolyte as well as impeded charge injection and charge separation is monitored in the ANP/RND array photoanode with neutral electrolyte, which are, respectively, ascribed to the series resistance of neutral electrolyte, the fundamentally pH-dependent water oxidation mechanism on TiO2 surface, as well as the less band bending at the interface of TiO2 and neutral electrolyte. Accordingly, a TiO2-based dual-staggered heterojunction ND array photoanode is further designed in this work to overcome the issue of less band bending with the neutral electrolyte. The improvement of charge separation efficiency is realized by the deposition of a transparent In2S3 layer on the ANP/RND array photoanode for constructing additional staggered heterojunction. Under illumination of AM 1.5G (100 mW cm(-2)), the improved photocurrent densities acquired both in neutral electrolyte and seawater at 1.23 V vs reversible hydrogen electrode (RHE), which approach the theoretical value for rutile TiO2, are demonstrated in the dual-staggered-heterojunction ND array photoanode. Faradaic efficiencies of similar to 95 and similar to 32% for solar water oxidation in neutral electrolyte and solar seawater oxidation for 2 h are acquired at 1.23 V vs RHE, respectively.
引用
收藏
页码:3714 / 3722
页数:9
相关论文
共 28 条
[1]   Cobalt phosphate modified TiO2 nanowire arrays as co-catalysts for solar water splitting [J].
Ai, Guanjie ;
Mo, Rong ;
Li, Hongxing ;
Zhong, Jianxin .
NANOSCALE, 2015, 7 (15) :6722-6728
[2]   Improved photoelectrochemical water oxidation kinetics using a TiO2 nanorod array photoanode decorated with graphene oxide in a neutral pH solution [J].
Chae, Sang Youn ;
Sudhagar, Pitchaimuthu ;
Fujishima, Akira ;
Hwang, Yun Jeong ;
Joo, Oh-Shim .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (12) :7714-7719
[3]   Fabrication of an Efficient BiVO4-TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation [J].
Cheng, Bo-Yan ;
Yang, Jih-Sheng ;
Cho, Hsun-Wei ;
Wu, Jih-Jen .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (31) :20032-20039
[4]   Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production [J].
Cho, In Sun ;
Chen, Zhebo ;
Forman, Arnold J. ;
Kim, Dong Rip ;
Rao, Pratap M. ;
Jaramillo, Thomas F. ;
Zheng, Xiaolin .
NANO LETTERS, 2011, 11 (11) :4978-4984
[5]   Infrared spectroscopy of the TiO2/aqueous solution interface [J].
Connor, PA ;
Dobson, KD ;
McQuillan, AJ .
LANGMUIR, 1999, 15 (07) :2402-2408
[6]   Impact of Different Electrolytes on Photocatalytic Water Splitting [J].
Crawford, Samuel ;
Thimsen, Elijah ;
Biswas, Pratim .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (05) :H346-H351
[7]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[8]   PHOTOELECTROCHEMICAL STUDIES OF COLLOIDAL TIO2 FILMS - THE EFFECT OF OXYGEN STUDIED BY PHOTOCURRENT TRANSIENTS [J].
HAGFELDT, A ;
LINDSTROM, H ;
SODERGREN, S ;
LINDQUIST, SE .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1995, 381 (1-2) :39-46
[9]   Resistance and polarization losses in aqueous buffer-membrane electrolytes for water-splitting photoelectrochemical cells [J].
Hernandez-Pagan, Emil A. ;
Vargas-Barbosa, Nella M. ;
Wang, TsingHai ;
Zhao, Yixin ;
Smotkin, Eugene S. ;
Mallouk, Thomas E. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (06) :7582-7589
[10]   Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting [J].
Hisatomi, Takashi ;
Kubota, Jun ;
Domen, Kazunari .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (22) :7520-7535