Almost Periodic Solutions for Stochastic Differential Equations Driven By G-Brownian Motion

被引:7
作者
Zhang, Miao [1 ]
Zong, Gaofeng
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
G-Brownian motion; Non linear expectation; p-Mean almost periodicity; Stochastic differential equation; THEOREM;
D O I
10.1080/03610926.2013.863935
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we introduce the concept of the p-mean almost periodicity for stochastic processes in non linear expectation spaces. The existence and uniqueness of square-mean almost periodic solutions to some non linear stochastic differential equations driven by G-Brownian motion are established under some assumptions for the coefficients. The asymptotic stability of the unique square-mean almost periodic solution in the square-mean sense is also discussed.
引用
收藏
页码:2371 / 2384
页数:14
相关论文
共 28 条
[1]  
Amerio L., 1971, Almost Periodic Functions and Functional Equations
[2]  
[Anonymous], 1992, STOCH STOCH REP, DOI DOI 10.1080/17442509208833758
[3]  
[Anonymous], 2010, ARXIV10024546
[4]  
Arnold L., 1998, Stoch. Stoch. Rep., V64, P177
[5]  
Bezandry PH, 2011, ALMOST PERIODIC STOCHASTIC PROCESSES, P1, DOI 10.1007/978-1-4419-9476-9
[7]  
Chen Z., 2013, INT J APPROXIMATE RE
[8]  
Corduneanu C., 1989, Almost Periodic Functions.
[9]   On Almost Automorphic Mild Solutions for Nonautonomous Stochastic Evolution Equations [J].
Cui, Jing ;
Yan, Litan .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[10]   PERIODIC AND ALMOST-PERIODIC SOLUTIONS FOR SEMILINEAR STOCHASTIC-EQUATIONS [J].
DAPRATO, G ;
TUDOR, C .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1995, 13 (01) :13-33