General Method for Speeding Up Kinetic Monte Carlo Simulations

被引:18
|
作者
Rego, Artur S. C. [1 ]
Brandao, Amanda L. T. [1 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Chem & Mat Engn DEQM, BR-22451900 Rio De Janeiro, RJ, Brazil
关键词
FREE-RADICAL COPOLYMERIZATION; SUMMATION DIFFERENCE-EQUATIONS; MOLECULAR-WEIGHT DISTRIBUTION; CHAIN-LENGTH DISTRIBUTIONS; RAFT POLYMERIZATION; ICAR ATRP; ACCELERATION; POLYETHYLENE; OPTIMIZATION; COLLOCATION;
D O I
10.1021/acs.iecr.0c01069
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Kinetic Monte Carlo (MC) is the main stochastic strategy used to simulate polymerization systems, as it gives good results with simple formulation. Normally, the algorithm used in this method presents high computational times, being necessary to choose suitable control volume sizes, which gives reliable results in moderate simulation times. The use of high-level languages (Python, MATLAB) over low-level languages (C, Fortran) usually aggravates this scenario, as it is slower despite being easier to use. The current study presents a simple method for speeding up the MC simulation of polymerization reactions. First, the code itself is optimized to reduce by half the computational time required compared with the original code, and then a benchmark of pure Python and Python with Numba is made. The results show a drop in the computational times above 99% when using Numba instead of pure Python codes.
引用
收藏
页码:9034 / 9042
页数:9
相关论文
共 50 条
  • [21] Kinetic Monte Carlo simulations of FeCu alloys
    Domain, C
    Becquart, CS
    Van Duysen, JC
    MULTISCALE MODELLING OF MATERIALS, 1999, 538 : 217 - 222
  • [22] Kinetic Monte Carlo simulations of heteroepitaxial growth
    Biehl, M
    Ahr, M
    Kinzel, W
    Much, F
    THIN SOLID FILMS, 2003, 428 (1-2) : 52 - 55
  • [23] Kinetic Monte Carlo simulations of proton conductivity
    Maslowski, T.
    Drzewinski, A.
    Ulner, J.
    Wojtkiewicz, J.
    Zdanowska-Fraczek, M.
    Nordlund, K.
    Kuronen, A.
    PHYSICAL REVIEW E, 2014, 90 (01):
  • [24] Monte Carlo simulations for a kinetic growth model
    Onody, RN
    Neves, UPC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (20): : L527 - L531
  • [25] Speeding up Monte Carlo simulation of patchy hard cylinders
    Orellana, Alberto Giacomo
    Romani, Emanuele
    De Michele, Cristiano
    EUROPEAN PHYSICAL JOURNAL E, 2018, 41 (04):
  • [26] Accelerated kinetic Monte Carlo method for simulations of helium bubble formation in metals
    Zhou, X. W.
    Hui, C. S. Y.
    Robinson, D. B.
    Sugar, J. D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 523
  • [27] INTRODUCTION TO THE KINETIC MONTE CARLO METHOD
    Voter, Arthur F.
    RADIATION EFFECTS IN SOLIDS, 2007, 235 : 1 - 23
  • [28] Speeding up Monte Carlo integration: Control neighbors for optimal convergence
    Leluc, Remi
    Portier, Francois
    Segers, Johan
    Zhuman, Aigerim
    BERNOULLI, 2025, 31 (02) : 1160 - 1180
  • [29] Speeding up the Hybrid-Monte-Carlo algorithm for dynamical fermions
    Hasenbusch, M
    Jansen, K
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 1076 - 1078
  • [30] General method to sample systems in the microcanonical ensemble using Monte Carlo simulations
    Palma, G.
    Riveros, A.
    EUROPEAN PHYSICAL JOURNAL B, 2021, 94 (01):