General Method for Speeding Up Kinetic Monte Carlo Simulations

被引:18
|
作者
Rego, Artur S. C. [1 ]
Brandao, Amanda L. T. [1 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Chem & Mat Engn DEQM, BR-22451900 Rio De Janeiro, RJ, Brazil
关键词
FREE-RADICAL COPOLYMERIZATION; SUMMATION DIFFERENCE-EQUATIONS; MOLECULAR-WEIGHT DISTRIBUTION; CHAIN-LENGTH DISTRIBUTIONS; RAFT POLYMERIZATION; ICAR ATRP; ACCELERATION; POLYETHYLENE; OPTIMIZATION; COLLOCATION;
D O I
10.1021/acs.iecr.0c01069
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Kinetic Monte Carlo (MC) is the main stochastic strategy used to simulate polymerization systems, as it gives good results with simple formulation. Normally, the algorithm used in this method presents high computational times, being necessary to choose suitable control volume sizes, which gives reliable results in moderate simulation times. The use of high-level languages (Python, MATLAB) over low-level languages (C, Fortran) usually aggravates this scenario, as it is slower despite being easier to use. The current study presents a simple method for speeding up the MC simulation of polymerization reactions. First, the code itself is optimized to reduce by half the computational time required compared with the original code, and then a benchmark of pure Python and Python with Numba is made. The results show a drop in the computational times above 99% when using Numba instead of pure Python codes.
引用
收藏
页码:9034 / 9042
页数:9
相关论文
共 50 条
  • [1] Speeding up the Detection of Adsorbate Lateral Interactions in Graph-Theoretical Kinetic Monte Carlo Simulations
    Benson, Raz L.
    Yadavalli, Sai Sharath
    Stamatakis, Michail
    JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 127 (48): : 10307 - 10319
  • [2] Speeding up Monte Carlo for treatment planning
    Bielajew, A
    RADIOTHERAPY AND ONCOLOGY, 2003, 68 : S19 - S19
  • [3] Speeding up ab initio diffusion Monte Carlo simulations by a smart lattice regularization
    Nakano, Kousuke
    Maezono, Ryo
    Sorella, Sandro
    PHYSICAL REVIEW B, 2020, 101 (15)
  • [4] Speeding up simulation of diffusion in zeolites by a parallel synchronous kinetic Monte Carlo algorithm
    Gabrieli, Andrea
    Demontis, Pierfranco
    Pazzona, Federico G.
    Suffritti, Giuseppe B.
    PHYSICAL REVIEW E, 2011, 83 (05):
  • [5] KMCLib: A general framework for lattice kinetic Monte Carlo (KMC) simulations
    Leetmaa, Mikael
    Skorodumova, Natalia V.
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (09) : 2340 - 2349
  • [6] Method to account for arbitrary strains in kinetic Monte Carlo simulations
    Subramanian, Gopinath
    Perez, Danny
    Uberuaga, Blas P.
    Tome, Carlos N.
    Voter, Arthur F.
    PHYSICAL REVIEW B, 2013, 87 (14)
  • [7] Method for speeding up convergence of Monte-Carlo simulation in reliability calculation
    Ding, Ming
    Li, Shenghu
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2000, 24 (12): : 16 - 19
  • [8] Kinetic Monte Carlo simulations of precipitation
    Clouet, Emmanuel
    Hin, Celine
    Gendt, Dominique
    Nastar, Maylise
    Soisson, Frederic
    ADVANCED ENGINEERING MATERIALS, 2006, 8 (12) : 1210 - 1214
  • [9] Speeding up Monte Carlo simulations for the adaptive sum of powered score test with importance sampling
    Deng, Yangqing
    He, Yinqiu
    Xu, Gongjun
    Pan, Wei
    BIOMETRICS, 2022, 78 (01) : 261 - 273
  • [10] GENERAL CLUSTER UPDATING METHOD FOR MONTE-CARLO SIMULATIONS
    NIEDERMAYER, F
    PHYSICAL REVIEW LETTERS, 1988, 61 (18) : 2026 - 2029