Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films

被引:195
作者
Park, Min Hyuk [1 ,2 ,3 ]
Lee, Young Hwan [1 ,2 ]
Kim, Han Joon [1 ,2 ]
Kim, Yu Jin [1 ,2 ]
Moon, Taehwan [1 ,2 ]
Do Kim, Keum [1 ,2 ]
Hyun, Seung Dam [1 ,2 ]
Mikolajick, Thomas [3 ,4 ]
Schroeder, Uwe [3 ]
Hwang, Cheol Seong [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151744, South Korea
[2] Seoul Natl Univ, Interuniv Semicond Res Ctr, Seoul 151744, South Korea
[3] NaMLab gGmbH, Noethnitzer Str 64, D-01187 Dresden, Germany
[4] Tech Univ Dresden, Chair Nanoelect Mat, D-01062 Dresden, Germany
基金
新加坡国家研究基金会;
关键词
HFO2; TRANSITIONS;
D O I
10.1039/c7nr06342c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hf1-xZrxO2 (x similar to 0.5-0.7) has been the leading candidate of ferroelectric materials with a fluorite crystal structure showing highly promising compatibility with complementary metal oxide semiconductor devices. Despite the notable improvement in device performance and processing techniques, the origin of its ferroelectric crystalline phase (space group: Pca2(1)) formation has not been clearly elucidated. Several recent experimental and theoretical studies evidently showed that the interface and grain boundary energies of the higher symmetry phases (orthorhombic and tetragonal) contribute to the stabilization of the metastable non-centrosymmetric orthorhombic phase or tetragonal phase. However, there was a clear quantitative discrepancy between the theoretical expectation and experiment results, suggesting that the thermodynamic model may not provide the full explanation. This work, therefore, focuses on the phase transition kinetics during the cooling step after the crystallization annealing. It was found that the large activation barrier for the transition from the tetragonal/orthorhombic to the monoclinic phase, which is the stable phase at room temperature, suppresses the phase transition, and thus, plays a critical role in the emergence of ferroelectricity.
引用
收藏
页码:716 / 725
页数:10
相关论文
共 39 条
[1]   Stabilization of metastable phases in hafnia owing to surface energy effects [J].
Batra, Rohit ;
Huan Doan Tran ;
Ramprasad, Rampi .
APPLIED PHYSICS LETTERS, 2016, 108 (17)
[2]   Ferroelectricity in hafnium oxide thin films [J].
Boescke, T. S. ;
Mueller, J. ;
Braeuhaus, D. ;
Schroeder, U. ;
Boettger, U. .
APPLIED PHYSICS LETTERS, 2011, 99 (10)
[3]  
Cardarelli F., 2000, MAT HDB
[4]  
Cunningham D., 2014, THESIS, P359
[5]   Thermal Expansion of HfO2 and ZrO2 [J].
Haggerty, Ryan P. ;
Sarin, Pankaj ;
Apostolov, Zlatomir D. ;
Driemeyer, Patrick E. ;
Kriven, Waltraud M. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2014, 97 (07) :2213-2222
[6]   Stabilizing the ferroelectric phase in doped hafnium oxide [J].
Hoffmann, M. ;
Schroeder, U. ;
Schenk, T. ;
Shimizu, T. ;
Funakubo, H. ;
Sakata, O. ;
Pohl, D. ;
Drescher, M. ;
Adelmann, C. ;
Materlik, R. ;
Kersch, A. ;
Mikolajick, T. .
JOURNAL OF APPLIED PHYSICS, 2015, 118 (07)
[7]   Direct Observation of Negative Capacitance in Polycrystalline Ferroelectric HfO2 [J].
Hoffmann, Michael ;
Pesic, Milan ;
Chatterjee, Korok ;
Khan, Asif I. ;
Salahuddin, Sayeef ;
Slesazeck, Stefan ;
Schroeder, Uwe ;
Mikolajick, Thomas .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (47) :8643-8649
[8]   Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors [J].
Hoffmann, Michael ;
Schroeder, Uwe ;
Kuenneth, Christopher ;
Kersch, Alfred ;
Starschich, Sergej ;
Boettger, Ulrich ;
Mikolajick, Thomas .
NANO ENERGY, 2015, 18 :154-164
[9]   Pathways towards ferroelectricity in hafnia [J].
Huan, Tran Doan ;
Sharma, Vinit ;
Rossetti, George A., Jr. ;
Ramprasad, Rampi .
PHYSICAL REVIEW B, 2014, 90 (06)
[10]   Real-time atomistic observation of structural phase transformations in individual hafnia nanorods [J].
Hudak, Bethany M. ;
Depner, Sean W. ;
Waetzig, Gregory R. ;
Talapatra, Anjana ;
Arroyave, Raymundo ;
Banerjee, Sarbajit ;
Guiton, Beth S. .
NATURE COMMUNICATIONS, 2017, 8