Early Precambrian Crustal Evolution in the Irkut Block (Sharyzhalgai Uplift, Southwestern Siberian Craton): Synthesis of U-Pb, Lu-Hf and Sm-Nd Isotope Data

被引:8
作者
Turkina, O. M. [1 ,2 ]
机构
[1] Russian Acad Sci, Siberian Branch, VS Sobolev Inst Geol & Mineral, Pr Akad Kopiyuga 3, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Ul Pirogova 1, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Archean; Paleoproterozoic; crustal growth and recycling; depleted and enriched mantle sources; GRANULITE-GNEISS BLOCK; CHARNOCKITE-GRANITE COMPLEX; METATERRIGENOUS ROCKS; LITHOSPHERIC MANTLE; PLATFORM BASEMENT; LAKE BAIKAL; RE-OS; AGE; ZIRCON; METAMORPHISM;
D O I
10.2113/RGG20204255
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The paper presents a synthesis of zircon U-Pb and Lu-Hf and whole-rock Sm-Nd isotope data from main early Precambrian (3.40 to 1.85 Ga) metamorphic and magmatic units of the Irkut block (Sharyzhalgai uplift, southwestern Siberian craton). The Archean complexes consist of relict Paleoarchean (3.4 Ga) melanocratic granulites and predominant Neoarchean mafic and felsic granulites (2.70- 2.66 Ga), paragneisses (<= 2.75 Ga), and gneissic granites (2.54 Ga). The Paleoproterozoic complexes include paragneisses (1.95-1.85 Ga), granitoids and charnockites (1.86-1.84 Ga), as well as mafic intrusions and dikes (1.86 Ga). Few detrital zircons with Hf model ages of >= 3.6 Ga mark the Eoarchean onset of crustal growth in the Irkut block. Isotopic data record two major stages of crustal growth in early Precambrian evolution of the Irkut block: Paleoarchean (3.6-3.4 Ga) and Neoarchean (similar to 2.7-2.66 Ga). The Paleoarchean crustal growth was most likely associated with plume magmatism fed from depleted and primitive mantle sources. The spatial distribution of Paleoarchean crust is traceable in isotopic signatures of magmatic and detrital zircons from most of Mesoarchean to Paleoproterozoic units. The Neoarchean crustal growth from a depleted mantle source was due to subduction magmatism. Moderate crustal growth occurred in the Paleoproterozoic from 2.30 to 1.85 Ga. At the turn of 1.86-1.85 Ga, mafic magmas and products of their fractionation formed from both depleted and enriched sources under postcollisional extension; the latter sources were the subcontinental lithospheric mantle formed during Neoarchean subduction. Three major stages of crustal recycling have been established: Mesoarchean (similar to 3.0 Ga), Neoarchean (similar to 2.55 Ga), and Paleoproterozoic (1.86-1.85 Ga), which are characterized by near-coeval intracrustal melting and metamorphism. The recycling during the similar to 2.55 Ga and 1.86-1.85 Ga events apparently occurred in a collisional setting. The 2.7 Ga subduction-related felsic magmas also formed through the recycling of the Paleo-Mesoarchean crust. The hypothesized scenario for the geological evolution of the Irkut block is the dominant vertical growth and crustal recycling for about two billion years. Available isotope data record similar major crustal growth in the Paleoarchean and growth combined with recycling during the Neoarchean and Paleoproterozoic events in both the southwestern and northern and central parts of the Siberian craton. The Irkut block in the southwest differed in a long and continuous recycling during the Mesoarchean and pronounced Neoarchean crustal growth.
引用
收藏
页码:137 / 152
页数:16
相关论文
共 50 条
[41]   T-t EVOLUTION OF THE EARLY PROTEROZOIC ROCKS IN THE NORTHERN LADOGA REGION FROM THE DATA ON U-Pb, Rb-Sr AND Sm-Nd SYSTEMS IN MINERALS [J].
Baltybaev, Sh. K. ;
Savatenkov, V. M. ;
Petrakova, M. E. .
GEODYNAMICS & TECTONOPHYSICS, 2024, 15 (03)
[42]   Magmatic evolution of the ultramafic-mafic Kharaelakh intrusion (Siberian Craton, Russia): insights from trace-element, U-Pb and Hf-isotope data on zircon [J].
Malitch, Kreshimir Nenadovitch ;
Belousova, Elena A. ;
Griffin, William L. ;
Badanina, Inna Yu ;
Pearson, Norman J. ;
Presnyakov, Sergey L. ;
Tuganova, Evgeniya V. .
CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 2010, 159 (06) :753-768
[43]   Crustal evolution in the central Congo-Kasai Craton, Luebo, DR Congo: Insights from zircon U-Pb ages, Hf-isotope and trace-element data [J].
Batumike, J. M. ;
Griffin, W. L. ;
O'Reilly, S. Y. ;
Belousova, E. A. ;
Pawlitschek, M. .
PRECAMBRIAN RESEARCH, 2009, 170 (1-2) :107-115
[44]   Late Mesoproterozoic to Early Neoproterozoic Tectonic Evolution of the SW Yangtze Block, South China: Evidence from U-Pb Geochronology and Lu-Hf Isotopes of Detrital Zircons from Sedimentary Rocks [J].
Liu, Peiwen ;
Ding, Xiaozhong ;
Liu, Yanxue ;
Zhang, Jibiao .
JOURNAL OF EARTH SCIENCE, 2024, 35 (03) :812-827
[45]   Neoproterozoic geodynamic evolution of easternmost Kalahari: Constraints from U-Pb-Hf-O zircon, Sm-Nd isotope and geochemical data from the Schirmacher Oasis, East Antarctica [J].
Jacobs, J. ;
Mikhalsky, E. ;
Henjes-Kunst, F. ;
Laeufer, A. ;
Thomas, R. J. ;
Elburg, M. A. ;
Wang, C-C ;
Estrada, S. ;
Skublov, S. .
PRECAMBRIAN RESEARCH, 2020, 342
[46]   LA-ICP-MS zircon U-Pb dating, Lu-Hf, Sm-Nd geochronology and tectonic setting of the Mesoarchean mafic and felsic magmatic rocks in the Sangmelima granite-greenstone terrane, Ntem Complex (South Cameroon) [J].
Akame, Joseph Martial ;
Oliveira, Elson P. ;
Poujol, Marc ;
Hublet, Genevieve ;
Debaille, Vinciane .
LITHOS, 2020, 372
[47]   U-Pb zircon dating, Sr-Nd whole-rock and Lu-Hf zircon isotope analyses of the Eocene Arslandede pluton, Eastern Pontides, NE Turkey: Implications for mantle source and magma evolution [J].
Kaygusuz, Abdullah ;
Guloglu, Zikrullah Samet ;
Aydincakir, Emre ;
Yucel, Cem ;
Vural, Alaaddin ;
Siebel, Wolfgang ;
Jeong, Youn-Joong .
GEOCHEMISTRY, 2024, 84 (04)
[48]   New geochemical and combined zircon U-Pb and Lu-Hf isotopic data of orthogneisses in the northern Altyn Tagh, northern margin of the Tibetan plateau: Implication for Archean evolution of the Dunhuang Block and crust formation in NW China [J].
Long, Xiaoping ;
Yuan, Chao ;
Sun, Min ;
Kroener, Alfred ;
Zhao, Guochun .
LITHOS, 2014, 200 :418-431
[49]   Relict Mesoarchean (2.99-2.94 Ga) metamorphism overprinted by late Neoarchean tectonothermal event(s) from the Sukma Group supracrustal rocks, Bastar craton, India: Evidence from new Lu-Hf and Sm-Nd garnet isochron and Th-U-total Pb monazite ages [J].
Nandi, Ankita ;
Mukherjee, Shreya ;
Sorcar, Nilanjana ;
Vadlamani, Ravikant .
PRECAMBRIAN RESEARCH, 2023, 390
[50]   Integrated field geological and zircon morphology evidence for ca. 3.8 Ga rocks at Anshan: Comment on "Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton" by Wu et al. [Precambrian Res. 167 (2008) 339-362] [J].
Nutman, Allen R. ;
Wan, Yusheng ;
Liu, Dunyi .
PRECAMBRIAN RESEARCH, 2009, 172 (3-4) :357-360