Long-distance continuous-variable quantum key distribution with a Gaussian modulation

被引:233
作者
Jouguet, Paul [1 ,2 ]
Kunz-Jacques, Sebastien [2 ]
Leverrier, Anthony [3 ]
机构
[1] Telecom ParisTech, CNRS LTCI, Inst Telecom, F-75634 Paris 13, France
[2] SeQureNet, F-75013 Paris, France
[3] ICFO Inst Ciencies Foton, E-08860 Castelldefels, Barcelona, Spain
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 06期
关键词
D O I
10.1103/PhysRevA.84.062317
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We designed high-efficiency error correcting codes allowing us to extract an errorless secret key in a continuous-variable quantum key distribution (CVQKD) protocol using a Gaussian modulation of coherent states and a homodyne detection. These codes are available for a wide range of signal-to-noise ratios on an additive white Gaussian noise channel with a binary modulation and can be combined with a multidimensional reconciliation method proven secure against arbitrary collective attacks. This improved reconciliation procedure considerably extends the secure range of a CVQKD with a Gaussian modulation, giving a secret key rate of about 10(-3) bit per pulse at a distance of 120 km for reasonable physical parameters.
引用
收藏
页数:7
相关论文
共 29 条
[1]  
ANDRIYANOVA I, ARXIV10101911V1
[2]  
Berta M., ARXIV11075460V1
[3]  
BLOCH M, ARXIVCS0509041V1
[4]  
ELKOUSS D, ARXIV10062660V1
[5]   Efficient reconciliation protocol for discrete-variable quantum key distribution [J].
Elkouss, David ;
Leverrier, Anthony ;
Alleaume, Romain ;
Boutros, Joseph J. .
2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, :1879-+
[6]   Field test of a continuous-variable quantum key distribution prototype [J].
Fossier, S. ;
Diamanti, E. ;
Debuisschert, T. ;
Villing, A. ;
Tualle-Brouri, R. ;
Grangier, P. .
NEW JOURNAL OF PHYSICS, 2009, 11
[7]   Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution [J].
Garcia-Patron, Raul ;
Cerf, Nicolas J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (19)
[8]   Continuous variable quantum cryptography using coherent states [J].
Grosshans, F ;
Grangier, P .
PHYSICAL REVIEW LETTERS, 2002, 88 (05) :4
[9]   Security of coherent-state quantum cryptography in the presence of Gaussian noise [J].
Heid, Matthias ;
Luetkenhaus, Norbert .
PHYSICAL REVIEW A, 2007, 76 (02)
[10]  
KUNZJACQUES S, ARXIV11092844V1