Atom state evolution and collapse in ultracold gases during light scattering into a cavity

被引:19
作者
Mekhov, I. B. [1 ]
Ritsch, H. [2 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
基金
奥地利科学基金会;
关键词
BOSE-EINSTEIN CONDENSATE; OPTICAL LATTICES; FIELD;
D O I
10.1134/S1054660X11150163
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the light scattering from ultracold atoms trapped in an optical lattice inside a cavity. In such a system, both the light and atomic motion should be treated in a fully quantum mechanical way. The unitary evolution of the light-matter quantum state is shown to demonstrate the non-trivial phase dependence, quadratic in the atom number. This is essentially due to the dynamical self-consistent nature of the light modes assumed in our model. The collapse of the quantum state during the photocounting process is analyzed as well. It corresponds to the measurement-induced atom number squeezing. We show that, at the final stage of the state collapse, the shrinking of the width of the atom number distribution behaves exponentially in time. This is much faster than the square root time dependence, obtained for the initial stage of the state collapse. The exponentially fast squeezing appears due to the discrete nature of the atom number distribution.
引用
收藏
页码:1486 / 1490
页数:5
相关论文
共 19 条
[1]   Probing the Superfluid-to-Mott Insulator Transition at the Single-Atom Level [J].
Bakr, W. S. ;
Peng, A. ;
Tai, M. E. ;
Ma, R. ;
Simon, J. ;
Gillen, J. I. ;
Foelling, S. ;
Pollet, L. ;
Greiner, M. .
SCIENCE, 2010, 329 (5991) :547-550
[2]   Cavity optomechanics with a Bose-Einstein condensate [J].
Brennecke, Ferdinand ;
Ritter, Stephan ;
Donner, Tobias ;
Esslinger, Tilman .
SCIENCE, 2008, 322 (5899) :235-238
[3]   Cavity QED with a Bose-Einstein condensate [J].
Brennecke, Ferdinand ;
Donner, Tobias ;
Ritter, Stephan ;
Bourdel, Thomas ;
Koehl, Michael ;
Esslinger, Tilman .
NATURE, 2007, 450 (7167) :268-U8
[4]   Relative phase of two Bose-Einstein condensates [J].
Castin, Y ;
Dalibard, J .
PHYSICAL REVIEW A, 1997, 55 (06) :4330-4337
[5]   Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip [J].
Colombe, Yves ;
Steinmetz, Tilo ;
Dubois, Guilhem ;
Linke, Felix ;
Hunger, David ;
Reichel, Jakob .
NATURE, 2007, 450 (7167) :272-U9
[6]   Measurement-induced squeezing of a Bose-Einstein condensate [J].
Dalvit, DAR ;
Dziarmaga, J ;
Onofrio, R .
PHYSICAL REVIEW A, 2002, 65 (03) :4
[7]   Collapse and revival of the matter wave field of a Bose-Einstein condensate [J].
Greiner, M ;
Mandel, O ;
Hänsch, TW ;
Bloch, I .
NATURE, 2002, 419 (6902) :51-54
[8]   Creation of coherence in Bose-Einstein condensates by atom detection [J].
Horak, P ;
Barnett, SM .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1999, 32 (14) :3421-3436
[9]   Ultracold atoms in optical lattices generated by quantized light fields [J].
Maschler, C. ;
Mekhov, I. B. ;
Ritsch, H. .
EUROPEAN PHYSICAL JOURNAL D, 2008, 46 (03) :545-560
[10]   Quantum optical measurements in ultracold gases: Macroscopic Bose-Einstein condensates [J].
Mekhov, I. B. ;
Ritsch, H. .
LASER PHYSICS, 2010, 20 (03) :694-699