Deep learning-based adversarial multi-classifier optimization for cross-domain machinery fault diagnostics

被引:71
|
作者
Li, Xiang [1 ,3 ]
Zhang, Wei [2 ,3 ]
Ma, Hui [3 ,4 ]
Luo, Zhong [3 ,4 ]
Li, Xu [5 ]
机构
[1] Northeastern Univ, Coll Sci, Shenyang 110819, Peoples R China
[2] Shenyang Aerosp Univ, Sch Aerosp Engn, Shenyang 110136, Peoples R China
[3] Northeastern Univ, Key Lab Vibrat & Control Aeropropuls Syst, Minist Educ, Shenyang 110819, Peoples R China
[4] Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Peoples R China
[5] Northeastern Univ, State Key Lab Rolling & Automat, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Deep learning; Adversarial neural network; Rotating machinery; Transfer learning; CONVOLUTIONAL NEURAL-NETWORK; ADAPTATION; SYSTEM;
D O I
10.1016/j.jmsy.2020.04.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Despite the recent success in data-driven machinery fault diagnosis, cross-domain diagnostic tasks still remain challenging where the supervised training data and unsupervised testing data are collected under different operating conditions. In order to address the domain shift problem, minimizing the marginal domain distribution discrepancy is considered in most of the existing studies. While improvements have been achieved, the class-level alignments between domains are generally neglected, resulting in deteriorations in testing performance. This paper proposes an adversarial multi-classifier optimization method for cross-domain fault diagnosis based on deep learning. Through adversarial training, the overfitting phenomena of different classifiers are exploited to achieve class-level domain adaptation effects, facilitating extraction of domain-invariant features and development of cross-domain classifiers. Experiments on three rotating machinery datasets are carried out for validations, and the results suggest the proposed method is promising for cross-domain fault diagnostic tasks.
引用
收藏
页码:334 / 347
页数:14
相关论文
共 50 条
  • [1] Partial transfer learning in machinery cross-domain fault diagnostics using class-weighted adversarial networks
    Li, Xiang
    Zhang, Wei
    Ma, Hui
    Luo, Zhong
    Li, Xu
    NEURAL NETWORKS, 2020, 129 (313-322) : 313 - 322
  • [2] Deep Learning-Based Partial Domain Adaptation Method on Intelligent Machinery Fault Diagnostics
    Li, Xiang
    Zhang, Wei
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (05) : 4351 - 4361
  • [3] Deep Learning-Based Machinery Fault Diagnostics With Domain Adaptation Across Sensors at Different Places
    Li, Xiang
    Zhang, Wei
    Xu, Nan-Xi
    Ding, Qian
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (08) : 6785 - 6794
  • [4] Domain Adversarial Transfer Network for Cross-Domain Fault Diagnosis of Rotary Machinery
    Chen, Zhuyun
    He, Guolin
    Li, Jipu
    Liao, Yixiao
    Gryllias, Konstantinos
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (11) : 8702 - 8712
  • [5] Cross-domain intelligent diagnostics for rotating machinery using domain adaptive and adversarial networks
    Hu, Kui
    Cheng, Yiwei
    Wu, Jun
    Zhu, Haiping
    JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2024, 42
  • [6] Cross-Domain Machinery Fault Diagnosis Using Adversarial Network with Conditional Alignments
    Xu, Nan-Xi
    Li, Xiang
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [7] Multi-source Adversarial Domain Adaptive Fault Diagnosis Method Based on Multi-classifier Alignment
    Zheng, Zhiwei
    He, Yu
    Ma, Tianyu
    Xiang, Qingsong
    COGNITIVE COMPUTATION, 2025, 17 (02)
  • [8] A Novel Multiview Predictive Local Adversarial Network for Partial Transfer Learning in Cross-Domain Fault Diagnostics
    Tan, Shuai
    Wang, Kailiang
    Shi, Hongbo
    Song, Bing
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [9] A deep transfer learning method based on stacked autoencoder for cross-domain fault diagnosis
    Deng, Ziwei
    Wang, Zhuoyue
    Tang, Zhaohui
    Huang, Keke
    Zhu, Hongqiu
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 408
  • [10] An enhanced domain-adversarial neural networks for intelligent cross-domain fault diagnosis of rotating machinery
    Zhang, Zhongwei
    Shao, Mingyu
    Ma, Chicheng
    Lv, Zhe
    Zhou, Jilei
    NONLINEAR DYNAMICS, 2022, 108 (03) : 2385 - 2404