L2 global well-posedness of the initial value problem associated to the Benjamin equation

被引:40
作者
Linares, F [1 ]
机构
[1] Inst Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
关键词
Benjamin equation; well-posedness; KdV;
D O I
10.1006/jdeq.1998.3530
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study well-posedness for the initial value problem associated to the Benjamin equation and the periodic Benjamin equation. Global results are established for data in L-R(R) and L-2(T), respectively. We apply the recent theory, developed by Kenig, Pence, and Vega and Bourgain, to deal with low-regularity data for the initial value problem associated to the Korteweg-de Vries equation. (C) 1999 Academic Press.
引用
收藏
页码:377 / 393
页数:17
相关论文
共 13 条
[11]   THE CAUCHY-PROBLEM FOR THE KORTEWEG-DEVRIES EQUATION IN SOBOLEV SPACES OF NEGATIVE INDEXES [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
DUKE MATHEMATICAL JOURNAL, 1993, 71 (01) :1-21
[12]   A bilinear estimate with applications to the KdV equation [J].
Kenig, CE ;
Ponce, G ;
Vega, L .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :573-603
[13]  
Ponce G., 1991, DIFFERENTIAL INTEGRA, V4, P527