Evaluation of spatio-temporal forecasting methods in various smart city applications

被引:60
|
作者
Tascikaraoglu, Akin [1 ]
机构
[1] Yildiz Tech Univ, Dept Elect Engn, TR-34220 Istanbul, Turkey
关键词
Spatio-temporal models; Forecasting; Wind speed; Solar irradiance; Load demand; Traffic characteristics; WIND POWER FORECAST; SPATIAL CORRELATION; NEURAL-NETWORK; FLOW-RATE; SPEED; PREDICTION; MODELS; SIMULATION; GENERATION;
D O I
10.1016/j.rser.2017.09.078
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Together with the increasing population and urbanization, cities have started to face challenges that hinder their socio-economic and sustainable development. The concept of smart cities, therefore, has emerged during the last years as a response to these problems. Advanced measurement and communication technologies enabled through smart cities have particularly played a key role in dealing with such economic, social and organizational challenges faced during the growing of cities. In this sense, using historical information provided with the mentioned technologies, various forecasting tools have been incorporated into smart city environment in order to manage more effectively its essential components such as smart grids and Intelligent Transportation Systems (ITS). For a further improvement in forecasting accuracy and hence in the management of these smart systems, recently, the information available in space has been also introduced in forecasting tools in addition to that in time. These advanced forecasting approaches, called spatio-temporal methods, have the capability of making use of all the available data collected from different locations. The potential benefits of these approaches have been underlined in various recent studies in the literature. In this paper, a comprehensive overview and assessment of forecasting approaches including both spatial and temporal information have been presented for the purpose of supporting the ongoing efforts for exploiting the available information in smart city applications. With this objective, the spatio-temporal forecasting methods presented in the literature are classified considering their implementation areas and model structures. Furthermore, the similarities and peculiarities of the methods classified are examined in detail, resulted in the compiling of valuable reference information for future studies on improving these approaches.
引用
收藏
页码:424 / 435
页数:12
相关论文
共 50 条
  • [1] Compressive Spatio-Temporal Forecasting of Meteorological Quantities and Photovoltaic Power
    Tascikaraoglu, Akin
    Sanandaji, Borhan M.
    Chicco, Gianfranco
    Cocina, Valeria
    Spertino, Filippo
    Erdinc, Ozan
    Paterakis, Nikolaos G.
    Catalao, Joao P. S.
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2016, 7 (03) : 1295 - 1305
  • [2] Relative evaluation of probabilistic methods for spatio-temporal wind forecasting
    Bentsen, Lars odegaard
    Warakagoda, Narada Dilp
    Stenbro, Roy
    Engelstad, Paal
    JOURNAL OF CLEANER PRODUCTION, 2024, 434
  • [3] Short-Term Spatio-Temporal Forecasting of Photovoltaic Power Production
    Agoua, Xwegnon Ghislain
    Girard, Robin
    Kariniotakis, George
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2018, 9 (02) : 538 - 546
  • [4] Probabilistic Models for Spatio-Temporal Photovoltaic Power Forecasting
    Agoua, Xwegnon Ghislain
    Girard, Robin
    Kariniotakis, George
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2019, 10 (02) : 780 - 789
  • [5] Spatio-temporal DeepKriging for interpolation and probabilistic forecasting
    Nag, Pratik
    Sun, Ying
    Reich, Brian J.
    SPATIAL STATISTICS, 2023, 57
  • [6] Short-term residential electric load forecasting: A compressive spatio-temporal approach
    Tascikaraoglu, Akin
    Sanandaji, Borhan M.
    ENERGY AND BUILDINGS, 2016, 111 : 380 - 392
  • [7] A Short-Term Spatio-Temporal Approach for Photovoltaic Power Forecasting
    Tascikaraoglu, Akin
    Sanandaji, Borhan M.
    Chicco, Gianfranco
    Cocina, Valeria
    Spertino, Filippo
    Erdinc, Ozan
    Paterakis, Nikolaos G.
    Catalao, Joao P. S.
    2016 POWER SYSTEMS COMPUTATION CONFERENCE (PSCC), 2016,
  • [8] Improved Spatio-Temporal Linear Models for Very Short-Term Wind Speed Forecasting
    Filik, Tansu
    ENERGIES, 2016, 9 (03):
  • [9] Componentnet: Processing U- and V-components for spatio-Temporal wind speed forecasting
    Bastos, Bruno Quaresma
    Cyrino Oliveira, Fernando L.
    Milidiu, Ruy Luiz
    ELECTRIC POWER SYSTEMS RESEARCH, 2021, 192
  • [10] Spatio-Temporal Traffic Flow Forecasting on a City-Wide Sensor Network
    Kunde, Felix
    Hartenstein, Alexander
    Sauer, Petra
    DYNAMICS IN GISCIENCE, 2018, : 253 - 265