Joint imbalanced classification and feature selection for hospital readmissions

被引:68
|
作者
Du, Guodong [1 ]
Zhang, Jia [1 ]
Luo, Zhiming [2 ]
Ma, Fenglong [3 ]
Ma, Lei [4 ]
Li, Shaozi [1 ]
机构
[1] Xiamen Univ, Dept Artificial Intelligence, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Postdoc Ctr Informat & Commun Engn, Xiamen 361005, Peoples R China
[3] Penn State Univ, Coll Informat Sci & Technol, University Pk, PA 16802 USA
[4] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China
基金
中国博士后科学基金;
关键词
Hospital readmission; Imbalanced classification; Feature selection; l(1)-norm regularization; Convex optimization; RISK; OPTIMIZATION; PREDICTION; FRAMEWORK; MODELS; SMOTE;
D O I
10.1016/j.knosys.2020.106020
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hospital readmission is one of the most important service quality measures. Recently, numerous risk assessment models have been proposed to address the hospital readmission problem. However, poor understanding of the class-imbalance hospital readmission data still challenges the development of accurate predictive models. To overcome the issue, a new risk prediction method termed joint imbalanced classification and feature selection (JICFS) is proposed for handling such a problem. To be specific, we construct the loss function within the large margin framework, in which the sample weight is involved to deal with the class imbalanced problem. Based on this, we design an optimization objective function involving l(1)-norm regularization for improving the performance, and an iterative scheme is proposed to solve the optimization problem, thereby achieving feature selection to improve the performance. Finally, experimental results on six real-world hospital readmission datasets demonstrate that the proposed algorithm has the advantage compared with some state-of-the-art methods. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Multiset Feature Learning for Highly Imbalanced Data Classification
    Jing, Xiao-Yuan
    Zhang, Xinyu
    Zhu, Xiaoke
    Wu, Fei
    You, Xinge
    Gao, Yang
    Shan, Shiguang
    Yang, Jing-Yu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (01) : 139 - 156
  • [22] An empirical study on the joint impact of feature selection and data resampling on imbalance classification
    Chongsheng Zhang
    Paolo Soda
    Jingjun Bi
    Gaojuan Fan
    George Almpanidis
    Salvador García
    Weiping Ding
    Applied Intelligence, 2023, 53 : 5449 - 5461
  • [23] Joint multilabel classification and feature selection based on deep canonical correlation analysis
    Dai, Liang
    Du, Guodong
    Zhang, Jia
    Li, Candong
    Wei, Rong
    Li, Shaozi
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (22):
  • [24] Feature augmentation for imbalanced classification with conditional mixture WGANs
    Zhang, Yinghui
    Sun, Bo
    Xiao, Yongkang
    Xiao, Rong
    Wei, YunGang
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2019, 75 : 89 - 99
  • [25] Feature selection for hierarchical classification via joint semantic and structural information of labels
    Huang, Hai
    Liu, Huan
    KNOWLEDGE-BASED SYSTEMS, 2020, 195
  • [26] Evolutionary feature selection for imbalanced data
    Tusell Rey, Claudia C.
    Salinas Garcia, Viridiana
    Villuendas-Rey, Yenny
    2023 MEXICAN INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE, ENC, 2024,
  • [27] Ship Classification in SAR Image by Joint Feature and Classifier Selection
    Lang, Haitao
    Zhang, Jie
    Zhang, Xi
    Meng, Junmin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (02) : 212 - 216
  • [28] Classification with machine learning algorithms after hybrid feature selection in imbalanced data sets
    Pulat, Meryem
    Kocakoc, Ipek Deveci
    OPERATIONS RESEARCH AND DECISIONS, 2024, 34 (04) : 157 - 183
  • [29] A Feature Selection Model for Binary Classification of Imbalanced Data Based on Preference for Target Instances
    Tan, Ding-Wen
    Liew, Soung-Yue
    Tan, Teik-Boon
    Yeoh, William
    2012 4TH CONFERENCE ON DATA MINING AND OPTIMIZATION (DMO), 2012, : 35 - 42
  • [30] Feature Extraction, Selection, and K-Nearest Neighbors Algorithm for Shark Behavior Classification Based on Imbalanced Dataset
    Yang, Yu
    Yeh, Hen-Geul
    Zhang, Wenlu
    Lee, Calvin J.
    Meese, Emily N.
    Lowe, Christopher G.
    IEEE SENSORS JOURNAL, 2021, 21 (05) : 6429 - 6439