Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar

被引:49
作者
Hsu, Paul S. [1 ]
Gragston, Mark [2 ]
Wu, Yue [2 ]
Zhang, Zhili [2 ]
Patnaik, Anil K. [1 ,3 ]
Kiefer, Johannes [4 ,5 ]
Roy, Sukesh [1 ]
Gord, James R. [6 ]
机构
[1] Spectral Energies LLC, Dayton, OH 45431 USA
[2] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA
[3] Wright State Univ, Dept Phys, Dayton, OH 45435 USA
[4] Univ Aberdeen, Sch Engn, Aberdeen AB24 3UE, Scotland
[5] Univ Bremen, Tech Thermodynam, Bremen, Germany
[6] Aerosp Syst Directorate, Air Force Res Lab, Wright Patterson AFB, OH 45433 USA
基金
美国国家科学基金会;
关键词
INDUCED BREAKDOWN SPECTROSCOPY; LASER-INDUCED PLASMA; INDUCED SPARK; GAS; EMISSION; IGNITION; MIXTURE; ENGINE;
D O I
10.1364/AO.55.008042
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nanosecond laser-induced breakdown spectroscopy (ns-LIBS) is employed for quantitative local fuel-air (F/A) ratio (i.e., ratio of actual fuel-to-oxidizer mass over ratio of fuel-to-oxidizer mass at stoichiometry, measurements in well-characterized methane-air flames at pressures of 1-11 bar). We selected nitrogen and hydrogen atomic-emission lines at 568 nm and 656 nm, respectively, to establish a correlation between the line intensities and the F/A ratio. We have investigated the effects of laser-pulse energy, camera gate delay, and pressure on the sensitivity, stability, and precision of the quantitative ns-LIBS F/A ratio measurements. We determined the optimal laser energy and camera gate delay for each pressure condition and found that measurement stability and precision are degraded with an increase in pressure. We have identified primary limitations of the F/A ratio measurement employing ns-LIBS at elevated pressures as instabilities caused by the higher density laser-induced plasma and the presence of the higher level of soot. Potential improvements are suggested. (C) 2016 Optical Society of America
引用
收藏
页码:8042 / 8048
页数:7
相关论文
共 35 条
[1]   Introduction to gas discharges [J].
Braithwaite, NSJ .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2000, 9 (04) :517-527
[2]   Laser-induced breakdown spectroscopy for lambda quantification in a direct-injection engine [J].
Buschbeck, M. ;
Buechler, F. ;
Halfmann, T. ;
Arndt, S. .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2012, 74-75 :103-108
[3]   Optical emission studies of nitrogen plasma generated by IR CO2 laser pulses [J].
Camacho, J. J. ;
Poyato, J. M. L. ;
Diaz, L. ;
Santos, M. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2007, 40 (24) :4573-4590
[4]   Advances in intense femtosecond laser filamentation in air [J].
Chin, S. L. ;
Wang, T. -J. ;
Marceau, C. ;
Wu, J. ;
Liu, J. S. ;
Kosareva, O. ;
Panov, N. ;
Chen, Y. P. ;
Daigle, J. -F. ;
Yuan, S. ;
Azarm, A. ;
Liu, W. W. ;
Seideman, T. ;
Zeng, H. P. ;
Richardson, M. ;
Li, R. ;
Xu, Z. Z. .
LASER PHYSICS, 2012, 22 (01) :1-53
[5]  
Chin S. L., 2004, ADV MULTIPHOTON PROC, V16, P273
[6]   Combustion Diagnostics with Femtosecond Laser Radiation [J].
Couris, S. ;
Kotzagianni, M. ;
Baskevicius, A. ;
Bartulevicius, T. ;
Sirutkaitis, V. .
XXII INTERNATIONAL CONFERENCE ON SPECTRAL LINE SHAPES (ICSLS 2014), 2014, 548
[7]   Intensity ratios of H lines:: Departures from the ideal conditions in the range of laser-induced breakdown spectroscopy experiments [J].
Cruzado, A. ;
Di Rocco, H. .
APPLIED SPECTROSCOPY, 2007, 61 (10) :1084-1092
[8]   Hydrocarbon fuel concentration measurement in reacting flows using short-gated emission spectra of laser induced plasma [J].
Do, Hyungrok ;
Carter, Campbell .
COMBUSTION AND FLAME, 2013, 160 (03) :601-609
[9]   Measurements of hydrocarbons using laser-induced breakdown spectroscopy [J].
Ferioli, F ;
Buckley, SG .
COMBUSTION AND FLAME, 2006, 144 (03) :435-447
[10]   Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements [J].
Ferioli, F ;
Puzinauskas, PV ;
Buckley, SG .
APPLIED SPECTROSCOPY, 2003, 57 (09) :1183-1189