Influence of stepwise chondrogenesis-mimicking 3D extracellular matrix on chondrogenic differentiation of mesenchymal stem cells

被引:65
作者
Cai, Rong [1 ,2 ]
Nakamoto, Tomoko [1 ]
Kawazoe, Naoki [1 ]
Chen, Guoping [1 ,2 ]
机构
[1] Natl Inst Mat Sci, Tissue Regenerat Mat Unit, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050044, Japan
[2] Univ Tsukuba, Grad Sch Pure & Appl Sci, Dept Mat Sci & Engn, Tsukuba, Ibaraki 3058577, Japan
关键词
3D extracellular matrix (ECM) scaffold; Chondrogenesis; Mesenchymal stem cells (MSCs); Tissue engineering; CHONDROCYTE DIFFERENTIATION; CARTILAGE; TISSUE; SCAFFOLDS; PROLIFERATION; REGENERATION; MECHANISMS; EXPRESSION; PHENOTYPE; MSCS;
D O I
10.1016/j.biomaterials.2015.02.033
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Extracellular matrix (ECM) has drawn a broad attention for preparation of tissue engineering scaffolds and stem cell study. ECM scaffolds stepwise mimicking development of tissues can provide useful models to investigate the interactions between stem cells and ECM during the process of tissue development. In this study, 3D stepwise chondrogenesis-mimicking ECM scaffolds were prepared from mesenchymal stem cells (MSCs) by controlling the stages of chondrogenic differentiation. ECM scaffolds mimicking the early stage and late stage of chondrogenesis were obtained when MSCs were cultured in the chondrogenic medium for 1 and 3 w, respectively. The ECM scaffolds had different compositions as shown by immunohistochemical analysis. Stem cell (SC)-ECM scaffold was rich in collagen I and biglycan. Early stage chondrogenesis-mimicking (CE)-ECM scaffold had moderate amount of collagen II and aggrecan while late stage chondrogenesis-mimicking (CL)-ECM scaffold were rich in collagen II and aggrecan. These three ECM scaffolds had different effects on chondrogenesis of MSCs. The CE-ECM scaffold facilitated chondrogenesis, however the CL-ECM scaffolds remarkably inhibited chondrogenesis of MSCs. These ECM scaffolds not only can provide new 3D ECM models to investigate the effects of ECM on MSCs functions, but also can be used as favorable ECM scaffolds for tissue engineering. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:199 / 207
页数:9
相关论文
共 33 条
[1]   Controlled release of transforming growth factor-β3 from cartilage-extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells [J].
Almeida, Henrique V. ;
Liu, Yurong ;
Cunniffe, Grainne M. ;
Mulhall, Kevin J. ;
Matsiko, Amos ;
Buckley, Conor T. ;
O'Brien, Fergal J. ;
Kelly, Daniel J. .
ACTA BIOMATERIALIA, 2014, 10 (10) :4400-4409
[2]   RETRACTED: Engineered whole organs and complex tissues (Retracted article. See vol. 392, pg. 11, 2018) [J].
Badylak, Stephen F. ;
Weiss, Daniel J. ;
Caplan, Arthur ;
Macchiarini, Paolo .
LANCET, 2012, 379 (9819) :943-952
[3]   Extracellular matrix scaffolds for cartilage and bone regeneration [J].
Benders, Kim E. M. ;
van Weeren, P. Rene ;
Badylak, Stephen F. ;
Saris, Daniel B. F. ;
Dhert, Wouter J. A. ;
Malda, Jos .
TRENDS IN BIOTECHNOLOGY, 2013, 31 (03) :169-176
[4]   Regulation of the Chondrogenic Phenotype in Culture [J].
Bobick, Brent E. ;
Chen, Faye H. ;
Le, Annie M. ;
Tuan, Rocky S. .
BIRTH DEFECTS RESEARCH PART C-EMBRYO TODAY-REVIEWS, 2009, 87 (04) :351-371
[5]   Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: Influence of collagen type II extracellular matrix on MSC chondrogenesis [J].
Bosnakovski, D ;
Mizuno, M ;
Kim, G ;
Takagi, S ;
Okumura, M ;
Fujinaga, T .
BIOTECHNOLOGY AND BIOENGINEERING, 2006, 93 (06) :1152-1163
[6]   Automated selection of DAB-labeled tissue for immunohistochemical quantification [J].
Brey, EM ;
Lalani, Z ;
Johnston, C ;
Wong, M ;
McIntire, LV ;
Duke, PJ ;
Patrick, CW .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 2003, 51 (05) :575-584
[7]   Transcriptional mechanisms of chondrocyte differentiation [J].
de Crombrugghe, B ;
Lefebvre, V ;
Behringer, RR ;
Bi, WM ;
Murakami, S ;
Huang, WD .
MATRIX BIOLOGY, 2000, 19 (05) :389-394
[8]   Cellular interactions and signaling in cartilage development [J].
DeLise, AM ;
Fischer, L ;
Tuan, RS .
OSTEOARTHRITIS AND CARTILAGE, 2000, 8 (05) :309-334
[9]   Glucosamine promotes chondrogenic phenotype in both chondrocytes and mesenchymal stem cells and inhibits MMP-13 expression and matrix degradation [J].
Derfoul, A. ;
Miyoshi, A. D. ;
Freeman, D. E. ;
Tuan, R. S. .
OSTEOARTHRITIS AND CARTILAGE, 2007, 15 (06) :646-655
[10]   Cell migration in 3D matrix [J].
Even-Ram, S ;
Yamada, KM .
CURRENT OPINION IN CELL BIOLOGY, 2005, 17 (05) :524-532