Dual-Atomic Cu Sites for Electrocatalytic CO Reduction to C2+ Products

被引:83
|
作者
Li, Si [1 ,2 ]
Guan, Anxiang [1 ,2 ]
Yang, Chao [1 ,2 ]
Peng, Chen [1 ,2 ]
Lv, Ximeng [1 ,2 ]
Ji, Yali [1 ,2 ]
Quan, Yueli [1 ,2 ]
Wang, Qihao [1 ,2 ]
Zhang, Lijuan [1 ,2 ]
Zheng, Gengfeng [1 ,2 ]
机构
[1] Fudan Univ, Dept Chem, Lab Adv Mat, Shanghai 200438, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200438, Peoples R China
来源
ACS MATERIALS LETTERS | 2021年 / 3卷 / 12期
基金
美国国家科学基金会;
关键词
OXYGEN REDUCTION; CARBON-MONOXIDE; POROUS CARBON; ELECTROREDUCTION; CATALYSIS; OXIDE; FUEL;
D O I
10.1021/acsmaterialslett.1c00543
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Monodispersed single metal atoms have been demonstrated with unique potentials for electroreduction of CO2 or CO, while the capability of producing multicarbon (C2+) products is still limited. In this work, we developed a dual metal atomic catalyst with uniform distributions of two adjacent Cu-Cu or Cu-Ni atoms anchored on nitrogen-doped carbon frameworks, featuring distinctive catalytic sites for CO electroreduction. Due to the synergistic effect between adjacent metal sites, the dual Cu-Cu atomic catalyst enables efficient CO electroreduction to C2+ products with an outstanding Faradaic efficiency of similar to 91% and a high partial current density over 90 mA.cm(-2). In contrast, the dual Cu-Ni atomic catalyst exhibits a remarkably different CO electroreduction selectivity mainly toward CH4. Theoretical calculations suggest that the dual Cu atomic sites facilitate the electroreduction of two CO molecules and subsequent carbon-carbon coupling toward ethylene and acetate, while the replacement of one of the dual Cu atoms with Ni results in too strong CO adsorption, and thus only the single Cu atom functions as the catalytic site for the C-1 reduction pathway.
引用
收藏
页码:1729 / 1737
页数:9
相关论文
共 50 条
  • [1] C60-Stabilized Cu+ Sites Boost Electrocatalytic Reduction of CO2 to C2+ Products
    Zhao, Bohang
    Chen, Fanpeng
    Cheng, Chuanqi
    Li, Li
    Liu, Cuibo
    Zhang, Bin
    ADVANCED ENERGY MATERIALS, 2023, 13 (19)
  • [2] Dual-Metal Sites Drive Tandem Electrocatalytic CO2 to C2+ Products
    Xie, Guixian
    Guo, Weiwei
    Fang, Zijian
    Duan, Zongxia
    Lang, Xianzhen
    Liu, Doudou
    Mei, Guoliang
    Zhai, Yanling
    Sun, Xiaofu
    Lu, Xiaoquan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (47)
  • [3] Identifying the optimal oxidation state of Cu for electrocatalytic reduction of CO2 to C2+ products
    Xu, Liang
    Feng, Jiaqi
    Wu, Limin
    Song, Xinning
    Tan, Xingxing
    Zhang, Libing
    Ma, Xiaodong
    Jia, Shunhan
    Du, Juan
    Chen, Aibing
    Sun, Xiaofu
    Han, Buxing
    GREEN CHEMISTRY, 2023, 25 (04) : 1326 - 1331
  • [4] Electrocatalytic CO2 Reduction to C2+ Products in Flow Cells
    Chen, Qin
    Wang, Xiqing
    Zhou, Yajiao
    Tan, Yao
    Li, Hongmei
    Fu, Junwei
    Liu, Min
    ADVANCED MATERIALS, 2024, 36 (05)
  • [5] Asymmetric Cu(I)―W Dual-Atomic Sites Enable C―C Coupling for Selective Photocatalytic CO2 Reduction to C2H4
    Mao, Yuyin
    Zhang, Minghui
    Zhai, Guangyao
    Si, Shenghe
    Liu, Dong
    Song, Kepeng
    Liu, Yuanyuan
    Wang, Zeyan
    Zheng, Zhaoke
    Wang, Peng
    Dai, Ying
    Cheng, Hefeng
    Huang, Baibiao
    ADVANCED SCIENCE, 2024, 11 (28)
  • [6] Electrocatalytic reduction of CO2 captured in the carbonate form to C2+ products
    Zhang, Libing
    Sun, Xiaofu
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (22): : 2852 - 2854
  • [7] Advancing C-C coupling of the electrocatalytic CO2 reduction reaction for C2+ products
    Liang, Guangyuan
    Yang, Sheng
    Wu, Chao
    Liu, Yang
    Zhao, Yi
    Huang, Liang
    Zhang, Shaowei
    Dou, Shixue
    Du, Hongfang
    Cui, Dandan
    Lin, Liangxu
    JOURNAL OF MATERIALS CHEMISTRY A, 2025,
  • [8] Asymmetric Cu Sites for Enhanced CO2 Electroreduction to C2+ Products
    Guo, Weiwei
    Tan, Xingxing
    Jia, Shunhan
    Liu, Shoujie
    Song, Xinning
    Ma, Xiaodong
    Wu, Limin
    Zheng, Lirong
    Sun, Xiaofu
    Han, Buxing
    CCS CHEMISTRY, 2024, 6 (05): : 1231 - 1239
  • [9] Graphdiyne supported Ag-Cu tandem catalytic scheme for electrocatalytic reduction of CO2 to C2+ products
    Zhu, Qiuying
    Hu, Yuying
    Chen, Hongyu
    Meng, Chen
    Shang, Yizhu
    Hao, Chengcheng
    Wei, Shuxian
    Wang, Zhaojie
    Lu, Xiaoqing
    Liu, Siyuan
    NANOSCALE, 2023, 15 (05) : 2106 - 2113
  • [10] Electrocatalytic CO2 reduction to C2+ products on Cu and CuxZny electrodes: Effects of chemical composition and surface morphology
    da Silva, Alisson H. M.
    Raaijman, Stefan J.
    Santana, Cassia S.
    Assaf, Jose M.
    Gomes, Janaina F.
    Koper, Marc T. M.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 880