Quantum key distribution with finite resources: Secret key rates via Renyi entropies

被引:11
作者
Abruzzo, Silvestre [1 ]
Kampermann, Hermann [1 ]
Mertz, Markus [1 ]
Bruss, Dagmar [1 ]
机构
[1] Univ Dusseldorf, Inst Theoret Phys 3, D-40225 Dusseldorf, Germany
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 03期
关键词
UNCONDITIONAL SECURITY; PROOF;
D O I
10.1103/PhysRevA.84.032321
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A realistic quantum key distribution (QKD) protocol necessarily deals with finite resources, such as the number of signals exchanged by the two parties. We derive a bound on the secret key rate which is expressed as an optimization problem over Renyi entropies. Under the assumption of collective attacks by an eavesdropper, a computable estimate of our bound for the six-state protocol is provided. This bound leads to improved key rates in comparison to previous results.
引用
收藏
页数:10
相关论文
共 32 条
  • [1] Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography
    Bechmann-Pasquinucci, H
    Gisin, N
    [J]. PHYSICAL REVIEW A, 1999, 59 (06): : 4238 - 4248
  • [2] Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
  • [3] Min-entropy and quantum key distribution: Nonzero key rates for "small" numbers of signals
    Bratzik, Sylvia
    Mertz, Markus
    Kampermann, Hermann
    Bruss, Dagmar
    [J]. PHYSICAL REVIEW A, 2011, 83 (02):
  • [4] BRU D, 1998, PHYS REV LETT, V81, P3018
  • [5] Finite-key analysis for practical implementations of quantum key distribution
    Cai, Raymond Y. Q.
    Scarani, Valerio
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [6] CARTER JL, 1979, J COMPUT SYST SCI, V18, P143, DOI 10.1016/0022-0000(79)90044-8
  • [7] CHRISTANDL M, ARXIVQUANTPH0402131
  • [8] Postselection Technique for Quantum Channels with Applications to Quantum Cryptography
    Christandl, Matthias
    Koenig, Robert
    Renner, Renato
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (02)
  • [9] The Operational Meaning of Min- and Max-Entropy
    Koenig, Robert
    Renner, Renato
    Schaffner, Christian
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (09) : 4337 - 4347
  • [10] Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication
    Kraus, B
    Gisin, N
    Renner, R
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (08)