Guess & Check Codes for Deletions, Insertions, and Synchronization

被引:27
作者
Hanna, Serge Kas [1 ]
El Rouayheb, Salim [1 ]
机构
[1] Rutgers Univ State Univ New Jersey, ECE Dept, New Brunswick, NJ 08901 USA
基金
美国国家科学基金会;
关键词
Coding theory; deletions; insertions; file synchronization; systematic codes; CHANNELS; CAPACITY; BOUNDS;
D O I
10.1109/TIT.2018.2841936
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of constructing codes that can correct delta deletions occurring in an arbitrary binary string of length n bits. Varshamov-Tenengolts (VT) codes, dating back to 1965, are zero-error single deletion (delta = 1) correcting codes and have an asymptotically optimal redundancy. Finding similar codes for delta >= 2 deletions remains an open problem. In this paper, we relax the standard zero-error (i.e., worst-case) decoding requirement by assuming that the positions of the delta deletions (or insertions) are independent of the code word. Our contribution is a new family of explicit codes, that we call Guess & Check (GC) codes, that can correct with high probability up to a constant number of delta deletions (or insertions). GC codes are systematic; and have deterministic polynomial time encoding and decoding algorithms. We also describe the application of GC codes to file synchronization.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 28 条
[1]   On Helberg's Generalization of the Levenshtein Code for Multiple Deletion/Insertion Error Correction [J].
Abdel-Ghaffar, Khaled A. S. ;
Paluncic, Filip ;
Ferreira, Hendrik C. ;
Clarke, Willem A. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (03) :1804-1808
[2]  
Brakensiek J., 2016, P 27 ANN ACM SIAM S, P1884, DOI DOI 10.1137/1.9781611974331
[3]   An Improvement to Levenshtein's Upper Bound on the Cardinality of Deletion Correcting Codes [J].
Cullina, Daniel ;
Kiyavash, Negar .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (07) :3862-3870
[4]   Reliable communication over channels with insertions, deletions, and substitutions [J].
Davey, MC ;
MacKay, DJC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) :687-698
[5]   Capacity upper bounds for the deletion channel [J].
Diggavi, Suhas ;
Mitzenmacher, Michael ;
Pfister, Henry D. .
2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, :1716-+
[6]   On lower bounds for the capacity of deletion channels [J].
Drinea, Eleni ;
Mitzenmacher, Michael .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (10) :4648-4657
[7]  
Gabrys R, 2016, IEEE INT SYMP INFO, P2644, DOI 10.1109/ISIT.2016.7541778
[8]  
Guruswami V., 2016, CODING DELETIONS OBL
[9]   Deletion Codes in the High-Noise and High-Rate Regimes [J].
Guruswami, Venkatesan ;
Wang, Carol .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (04) :1961-1970
[10]  
Guruswami V, 2016, IEEE INT SYMP INFO, P620, DOI 10.1109/ISIT.2016.7541373