Domain Wall Leaky Integrate-and-Fire Neurons With Shape-Based Configurable Activation Functions

被引:13
作者
Brigner, Wesley H. [1 ]
Hassan, Naimul [1 ]
Hu, Xuan [1 ]
Bennett, Christopher H. [2 ]
Garcia-Sanchez, Felipe [3 ]
Cui, Can [4 ]
Velasquez, Alvaro [5 ]
Marinella, Matthew J. [6 ]
Incorvia, Jean Anne C. [4 ]
Friedman, Joseph S. [1 ]
机构
[1] Univ Texas Dallas, Dept Elect & Comp Engn, Richardson, TX 75080 USA
[2] Sandia Natl Labs, Albuquerque, NM 87213 USA
[3] Univ Salamanca, Dept Appl Phys, Salamanca 37008, Spain
[4] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[5] Air Force Res Lab, Informat Directorate, Rome, NY 13441 USA
[6] Arizona State Univ, Tempe, AZ 85281 USA
基金
美国国家科学基金会;
关键词
Neurons; Synapses; Spintronics; Magnetic tunneling; Neuromorphic engineering; Magnetic domain walls; Mathematical models; Artificial neural network; leaky integrate-and-fire (LIF) neuron; multilayer perceptron; neuromorphic computing; HARDWARE IMPLEMENTATION; NETWORK;
D O I
10.1109/TED.2022.3159508
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
CMOS devices display volatile characteristics and are not well suited for analog applications such as neuromorphic computing. Spintronic devices, on the other hand, exhibit both non-volatile and analog features, which are well suited to neuromorphic computing. Consequently, these novel devices are at the forefront of beyond-CMOS artificial intelligence applications. However, a large quantity of these artificial neuromorphic devices still require the use of CMOS to implement various neuromorphic functionalities, which decreases the efficiency of the system. To resolve this, we have previously proposed a number of artificial neurons and synapses that do not require CMOS for operation. Although these devices are a significant improvement over previous renditions, their ability to enable neural network learning and recognition is limited by their intrinsic activation functions. This work proposes modifications to these spintronic neurons that enable configuration of the activation functions through control of the shape of a magnetic domain wall track. Linear and sigmoidal activation functions are demonstrated in this work, which can be extended through a similar approach to enable a wide variety of activation functions.
引用
收藏
页码:2353 / 2359
页数:7
相关论文
共 26 条
  • [1] True North: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip
    Akopyan, Filipp
    Sawada, Jun
    Cassidy, Andrew
    Alvarez-Icaza, Rodrigo
    Arthur, John
    Merolla, Paul
    Imam, Nabil
    Nakamura, Yutaka
    Datta, Pallab
    Nam, Gi-Joon
    Taba, Brian
    Beakes, Michael
    Brezzo, Bernard
    Kuang, Jente B.
    Manohar, Rajit
    Risk, William P.
    Jackson, Bryan
    Modha, Dharmendra S.
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2015, 34 (10) : 1537 - 1557
  • [2] Bennett C. H., 2019, P SOC PHOTO-OPT INS
  • [3] Brigner W. H., 2020, ARXIV200200862
  • [4] Three Artificial Spintronic Leaky Integrate-and-Fire Neurons
    Brigner, Wesley H.
    Hu, Xuan
    Hassan, Naimul
    Jiang-Wei, Lucian
    Bennett, Christopher H.
    Garcia-Sanchez, Felipe
    Akinola, Otitoaleke
    Pasquale, Massimo
    Marinella, Matthew J.
    Incorvia, Jean Anne C.
    Friedman, Joseph S.
    [J]. SPIN, 2020, 10 (02)
  • [5] Shape-Based Magnetic Domain Wall Drift for an Artificial Spintronic Leaky Integrate-and-Fire Neuron
    Brigner, Wesley H.
    Friedman, Joseph S.
    Hassan, Naimul
    Jiang-Wei, Lucian
    Hu, Xuan
    Saha, Diptish
    Bennett, Christopher H.
    Marinella, Matthew J.
    Incorvia, Jean Anne C.
    Garcia-Sanchez, Felipe
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (11) : 4970 - 4975
  • [6] Graded-Anisotropy-Induced Magnetic Domain Wall Drift for an Artificial Spintronic Leaky Integrate-and-Fire Neuron
    Brigner, Wesley H.
    Hu, Xuan
    Hassan, Naimul
    Bennett, Christopher H.
    Incorvia, Jean Anne C.
    Garcia-Sanchez, Felipe
    Friedman, Joseph S.
    [J]. IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS, 2019, 5 (01): : 19 - 24
  • [7] Chen X, 2018, NANOSCALE, V10, P6139, DOI [10.1039/c7nr09722k, 10.1039/C7NR09722K]
  • [8] Low Energy Magnetic Domain Wall Logic in Short, Narrow, Ferromagnetic Wires
    Currivan, Jean Anne
    Jang, Youngman
    Mascaro, Mark D.
    Baldo, Marc A.
    Ross, Caroline A.
    [J]. IEEE MAGNETICS LETTERS, 2012, 3
  • [9] Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls
    Currivan-Incorvia, J. A.
    Siddiqui, S.
    Dutta, S.
    Evarts, E. R.
    Zhang, J.
    Bono, D.
    Ross, C. A.
    Baldo, M. A.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [10] SpikeNET: A simulator for modeling large networks of integrate and fire neurons
    Delorme, A
    Gautrais, J
    van Rullen, R
    Thorpe, S
    [J]. NEUROCOMPUTING, 1999, 26-7 : 989 - 996