On higher-order discriminants

被引:0
作者
Kostov, Vladimir Petrov [1 ]
机构
[1] Univ Cote Azur, LJAD, CNRS, Nice, France
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2020年 / 160卷
关键词
Polynomial in one variable; Discriminant set; Resultant; Multiple root; POLYNOMIAL-LIKE FUNCTIONS; ARRANGEMENTS;
D O I
10.1016/j.bulsci.2020.102842
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the family of polynomials in one variable P := x(n) + a(1)x(n-1) + . . . + a(n), n >= 4, we consider its higher-order discriminant sets {(D) over tilde (m) = 0}, where (D) over tilde (m) := Res(P, P-(m)), m = 2, ..., n - 2, and their projections in the spaces of the variables a(k) := (a(1), ..., a(k-1) a(k+1), ..., a(n)). Set P-(m) := Sigma(n-m)(j=0) c(j)a(j) x(n-m-j), P-m(,)k( ):= c(k) P - x(m) P-(m). We show that Res((D) over tilde (m), partial derivative(D) over tilde (m))partial derivative a(k), a(k)) = A(m,k)B(m,k)C(m,k)(2), where A(m,k )= a(n)(n-m-k), B-m,B-k = Res(P-m,P-k, P-m,P-k' ) if 1 <= k <= n m and = A(m,k) = a(n-m)(n-k), B-m,B-k = Res(P-(m),P(m+1)) if n - m + 1 <= k <= n. The equation C-m,C-k = 0 defines the projection in the space of the variables a(k) of the closure of the set of values of (a(1), ..., a(n)) an) for which P and P((m) )have two distinct roots in common. The polynomials B-m,B-k, C-m,C-k is an element of C[a(k)] are irreducible. The result is generalized to the case when P((m) )is replaced by a polynomial P-* := Sigma(n-m)(j=0) b(j)a(j)x(n-m-j) 0 not equal b(i) not equal b(j) not equal 0 for i not equal j. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:27
相关论文
共 15 条
[1]  
Castryck W, 2014, MATH COMPUT, V83, P3017
[2]  
Ezzaldine H., 2008, SERDICA MATH J, V34, P743
[3]   Overdetermined Strata for Degree 5 Hyperbolic Polynomials [J].
Hayssam, Ezzaldine ;
Houssam, Khalil ;
Mouhamad, Sarrage ;
Mouhamad, Hossein .
VIETNAM JOURNAL OF MATHEMATICS, 2015, 43 (01) :139-150
[4]  
Kostov V.P., 2011, PANORAMAS SYNTHESES, V33
[5]   On root arrangements for hyperbolic polynomial-like functions and their derivatives [J].
Kostov, Vladimir Petrov .
BULLETIN DES SCIENCES MATHEMATIQUES, 2007, 131 (05) :477-492
[6]   On hyperbolic polynomial-like functions and their derivatives [J].
Kostov, Vladimir Petrov .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2007, 137 :819-845
[7]   A Property of Discriminants [J].
Kostov, Vladimir Petrov .
VIETNAM JOURNAL OF MATHEMATICS, 2019, 47 (02) :287-296
[8]  
Kostov VP, 2017, CR ACAD BULG SCI, V70, P467
[9]   On polynomial-like functions [J].
Kostov, VP .
BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (09) :775-781
[10]   On arrangements of roots for a real hyperbolic polynomial and its derivatives [J].
Kostov, VP ;
Shapiro, BZ .
BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (01) :45-60