Self-driving laboratory for accelerated discovery of thin-film materials

被引:378
作者
MacLeod, B. P. [1 ,2 ]
Parlane, F. G. L. [1 ,2 ]
Morrissey, T. D. [1 ,2 ]
Hase, F. [3 ,4 ,5 ,6 ]
Roch, L. M. [3 ,4 ,5 ,6 ]
Dettelbach, K. E. [1 ]
Moreira, R. [1 ]
Yunker, L. P. E. [1 ]
Rooney, M. B. [1 ]
Deeth, J. R. [1 ]
Lai, V [1 ]
Ng, G. J. [1 ]
Situ, H. [1 ]
Zhang, R. H. [1 ]
Elliott, M. S. [1 ]
Haley, T. H. [1 ]
Dvorak, D. J. [2 ]
Aspuru-Guzik, A. [3 ,4 ,5 ,6 ,7 ]
Hein, J. E. [1 ]
Berlinguette, C. P. [1 ,2 ,7 ,8 ]
机构
[1] Univ British Columbia, Dept Chem, Vancouver, BC, Canada
[2] Univ British Columbia, Stewart Blusson Quantum Matter Inst, Vancouver, BC, Canada
[3] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[4] Univ Toronto, Dept Chem, Toronto, ON, Canada
[5] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[6] MaRS Ctr, Vector Inst Artificial Intelligence, Toronto, ON, Canada
[7] MaRS Ctr, Canadian Inst Adv Res CIFAR, Toronto, ON, Canada
[8] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
HOLE-TRANSPORTING MATERIALS; ORGANIC-SYNTHESIS; EXPERIMENTATION; OPTIMIZATION; PERFORMANCE; GENERATION; EFFICIENT; MOBILITY; ROBOT;
D O I
10.1126/sciadv.aaz8867
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Discovering and optimizing commercially viable materials for clean energy applications typically takes more than a decade. Self-driving laboratories that iteratively design, execute, and learn from materials science experiments in a fully autonomous loop present an opportunity to accelerate this research process. We report here a modular robotic platform driven by a model-based optimization algorithm capable of autonomously optimizing the optical and electronic properties of thin-film materials by modifying the film composition and processing conditions. We demonstrate the power of this platform by using it to maximize the hole mobility of organic hole transport materials commonly used in perovskite solar cells and consumer electronics. This demonstration highlights the possibilities of using autonomous laboratories to discover organic and inorganic materials relevant to materials sciences and clean energy technologies.
引用
收藏
页数:8
相关论文
共 37 条
  • [1] Aspuru-Guzik A., 2018, MAT ACCELERATION PLA
  • [2] Accelerated Discovery of Organic Polymer Photocatalysts for Hydrogen Evolution from Water through the Integration of Experiment and Theory
    Bai, Yang
    Wilbraham, Liam
    Slater, Benjamin J.
    Zwijnenburg, Martijn A.
    Sprick, Reiner Sebastian
    Cooper, Andrew I.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (22) : 9063 - 9071
  • [3] Advances in hole transport materials engineering for stable and efficient perovskite solar cells
    Bakr, Zinab H.
    Wali, Qamar
    Fakharuddin, Azhar
    Schmidt-Mende, Lukas
    Brown, Thomas M.
    Jose, Rajan
    [J]. NANO ENERGY, 2017, 34 : 271 - 305
  • [4] Reconfigurable system for automated optimization of diverse chemical reactions
    Bedard, Anne-Catherine
    Adamo, Andrea
    Aroh, Kosi C.
    Russell, M. Grace
    Bedermann, Aaron A.
    Torosian, Jeremy
    Yue, Brian
    Jensen, Klavs F.
    Jamison, Timothy F.
    [J]. SCIENCE, 2018, 361 (6408) : 1220 - +
  • [5] Towards reliable charge-mobility benchmark measurements for organic semiconductors
    Blakesley, James C.
    Castro, Fernando A.
    Kylberg, William
    Dibb, George F. A.
    Arantes, Caroline
    Valaski, Rogerio
    Cremona, Marco
    Kim, Jong Soo
    Kim, Ji-Seon
    [J]. ORGANIC ELECTRONICS, 2014, 15 (06) : 1263 - 1272
  • [6] Rapid Photovoltaic Device Characterization through Bayesian Parameter Estimation
    Brandt, Riley E.
    Kurchin, Rachel C.
    Steinmann, Vera
    Kitchaev, Daniil
    Roat, Chris
    Levcenco, Sergiu
    Ceder, Gerbrand
    Unold, Thomas
    Buonassisi, Tonio
    [J]. JOULE, 2017, 1 (04) : 843 - 856
  • [7] Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells
    Bu, Tongle
    Wu, Lan
    Liu, Xueping
    Yang, Xiaokun
    Zhou, Peng
    Yu, Xinxin
    Qin, Tianshi
    Shi, Jiangjian
    Wang, Song
    Li, Saisai
    Ku, Zhiliang
    Peng, Yong
    Huang, Fuzhi
    Meng, Qingbo
    Cheng, Yi-Bing
    Zhong, Jie
    [J]. ADVANCED ENERGY MATERIALS, 2017, 7 (20)
  • [8] Co(III) Complexes as p-Dopants in Solid-State Dye-Sensitized Solar Cells
    Burschka, Julian
    Kessler, Florian
    Nazeeruddin, Mohammad K.
    Graetzel, Michael
    [J]. CHEMISTRY OF MATERIALS, 2013, 25 (15) : 2986 - 2990
  • [9] How To Optimize Materials and Devices via Design of Experiments and Machine Learning: Demonstration Using Organic Photovoltaics
    Cao, Bing
    Adutwum, Lawrence A.
    Oliynyk, Anton O.
    Luber, Erik J.
    Olsen, Brian C.
    Mar, Arthur
    Buriak, Jillian M.
    [J]. ACS NANO, 2018, 12 (08) : 7434 - 7444
  • [10] Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing
    Correa-Baena, Juan-Pablo
    Hippalgaonkar, Kedar
    van Duren, Jeroen
    Jaffer, Shaffiq
    Chandrasekhar, Vijay R.
    Stevanovic, Vladan
    Wadia, Cyrus
    Guha, Supratik
    Buonassisi, Tonio
    [J]. JOULE, 2018, 2 (08) : 1410 - 1420