Homological mirror functors via Maurer-Cartan formalism

被引:0
作者
Cho, Cheol-Hyun [1 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
来源
STRING-MATH 2015 | 2017年 / 96卷
关键词
FLOER COHOMOLOGY; LAGRANGIAN INTERSECTIONS; SYMMETRY; DISCS; GENUS;
D O I
10.1090/pspum/096/01649
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a write-up of the lecture at String Math 2015. We give a survey on recent joint works with Hansol Hong and Siu-Cheong Lau where we develop a Lagrangian Floer theory formalism to explain some of Homological mirror symmetry phenomenons. The formalism does not need a Lagrangian torus fibration, but uses a single or finite collection of Lagrangians to produce a mirror Landau-Ginzburg model, which always comes with a canonical A(infinity)-functor from Fukaya category to matrix factorization category. We illustrate this by giving many different forms of the mirror of a symplectic torus.
引用
收藏
页码:83 / 100
页数:18
相关论文
共 24 条
  • [1] Abouzaid M., ARXIV14042659
  • [2] Akaho M, 2010, J DIFFER GEOM, V86, P381
  • [3] Aldi M, 2006, ADV THEOR MATH PHYS, V10, P591
  • [4] Artin M., 1990, Progress in Mathematics, V86, P33
  • [5] Mirror symmetry for weighted projective planes and their noncommutative deformations
    Auroux, Denis
    Katzarkov, Ludmil
    Orlov, Dmitri
    [J]. ANNALS OF MATHEMATICS, 2008, 167 (03) : 867 - 943
  • [6] Cho C.-H., 2014, ARXIV14064597
  • [7] Cho C.-H., 2015, ARXIV151207128
  • [8] Cho CH, 2006, ASIAN J MATH, V10, P773
  • [9] Lagrangian Floer potential of orbifold spheres
    Cho, Cheol-Hyun
    Hong, Hansol
    Kim, Sang-hyun
    Lau, Siu-Cheong
    [J]. ADVANCES IN MATHEMATICS, 2017, 306 : 344 - 426
  • [10] LOCALIZED MIRROR FUNCTOR FOR LAGRANGIAN IMMERSIONS, AND HOMOLOGICAL MIRROR SYMMETRY FOR Pa,b,c1
    Cho, Cheol-Hyun
    Hong, Hansol
    Lau, Siu-Cheong
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2017, 106 (01) : 45 - 126