Understanding Allostery in Purine Nucleoside Phosphorylases by Machine Learning and Molecular Dynamics Interaction Databases

被引:0
|
作者
Stefanic, Z. [1 ]
Gomaz, B. [1 ]
机构
[1] Rudjer Boskovic Inst, Zagreb, Croatia
来源
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES | 2022年 / 78卷
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MS35-05
引用
收藏
页码:E227 / E228
页数:2
相关论文
共 50 条
  • [21] Molecular quantum chemical data sets and databases for machine learning potentials
    Ullah, Arif
    Chen, Yuxinxin
    Dral, Pavlo O.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (04):
  • [22] Machine learning implicit solvation for molecular dynamics
    Chen, Yaoyi
    Kraemer, Andreas
    Charron, Nicholas E.
    Husic, Brooke E.
    Clementi, Cecilia
    Noe, Frank
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (08):
  • [23] Crystal structure and molecular dynamics studies of human purine nucleoside phosphorylase complexed with 7-deazaguanine
    Caceres, Rafael Andrade
    Saraiva Macedo Timmers, Luis Fernando
    Pauli, Ivani
    Gava, Lisandra Marques
    Ducati, Rodrigo Gay
    Basso, Luiz Augusto
    Santos, Diogenes Santiago
    de Azevedo, Walter Filgueira, Jr.
    JOURNAL OF STRUCTURAL BIOLOGY, 2010, 169 (03) : 379 - 388
  • [24] Crystal structure and molecular dynamics studies of purine nucleoside phosphorylase from Mycobacterium tuberculosis associated with acyclovir
    Caceres, Rafael A.
    Timmers, Luis F. S. M.
    Ducati, Rodrigo G.
    da Silva, Diego O. N.
    Basso, Luiz A.
    de Azevedo, Walter F., Jr.
    Santos, Diogenes S.
    BIOCHIMIE, 2012, 94 (01) : 155 - 165
  • [25] Understanding the Role of Interactive Machine Learning in Movement Interaction Design
    Gillies, Marco
    ACM TRANSACTIONS ON COMPUTER-HUMAN INTERACTION, 2019, 26 (01)
  • [26] Understanding the role of dynamics in the iron sulfur cluster molecular machine
    di Maio, Danilo
    Chandramouli, Balasubramanian
    Yan, Robert
    Brancato, Giuseppe
    Pastore, Annalisa
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2017, 1861 (01): : 3154 - 3163
  • [27] Open Boundary Modeling in Molecular Dynamics with Machine Learning
    Neumann, Philipp
    Wittmer, Niklas
    COMPUTATIONAL SCIENCE - ICCS 2020, PT VI, 2020, 12142 : 334 - 347
  • [28] Machine learning and excited-state molecular dynamics
    Westermayr, Julia
    Marquetand, Philipp
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (04):
  • [29] Protein deamidation prediction with machine learning and molecular dynamics
    Jia, Lei
    Sun, Yaxiong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [30] Optimisation of silane chemistry with machine learning and molecular dynamics
    Bhesania, Abhishek S.
    Sirk, Timothy W.
    Rinderspacher, Berend C.
    Benvenuto, Matthew
    Kubota, Munetaka
    Chowdhury, Sanjib C.
    Gillespie Jr, John W.
    MOLECULAR SIMULATION, 2025,