Ultrahigh Photoresponsive Device Based on ReS2/Graphene Heterostructure

被引:89
作者
Kang, Byunggil [1 ]
Kim, Youngchan [2 ,3 ]
Yoo, Won Jong [1 ]
Lee, Changgu [1 ,2 ]
机构
[1] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
[2] Sungkyunkwan Univ, Sch Mech Engn, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
[3] Sungkyunkwan Univ, IAMT, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
graphene; heterostructures; photodevices; ReS2; FIELD-EFFECT TRANSISTORS; 2-DIMENSIONAL MATERIALS; GRAPHENE; PHOTODETECTORS; RES2; EFFICIENT; DIODES;
D O I
10.1002/smll.201802593
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Heterostructures that combine graphene and transition metal dichalcogenides, such as MoS2, MoTe2, and WS2, have attracted attention due to their high performances in optoelectronic devices compared to homogeneous systems. Here, a photodevice based on a hybrid van der Waals heterostructure of rhenium disulfide (ReS2) and graphene is fabricated using the stacking method. The device presents a remarkable ultrahigh photoresponsivity of 7 x 10(5) A W-1 and a detectivity of 1.9 x 10(13) Jones, along with a fast response time of less than 30 ms. Tremendous photocurrents are generated in the heterostructure due to the direct bandgap, high quantum efficiency, and strong light absorption by the multilayer ReS2 and the high carrier mobility of graphene. The ReS2/graphene heterostructured device displays a high photocurrent under the applied gate voltages due to the photogating effect induced by the junction between graphene and ReS2. The ReS2/graphene heterostructure may find promising applications in future optoelectronic devices, providing a high sensitivity, flexibility, and transparency.
引用
收藏
页数:7
相关论文
共 41 条
[1]   Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices [J].
Bao, Qiaoliang ;
Loh, Kian Ping .
ACS NANO, 2012, 6 (05) :3677-3694
[2]  
Baugher BWH, 2014, NAT NANOTECHNOL, V9, P262, DOI [10.1038/nnano.2014.25, 10.1038/NNANO.2014.25]
[3]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[4]   Field Effect Transistors with Current Saturation and Voltage Gain in Ultrathin ReS2 [J].
Corbett, Chris M. ;
McClellan, Connor ;
Rai, Amritesh ;
Sonde, Sushant Sudam ;
Tutuc, Emanuel ;
Banerjee, Sanjay K. .
ACS NANO, 2015, 9 (01) :363-370
[5]   Atomically Thin Transition-Metal Dichalcogenides for Electrocatalysis and Energy Storage [J].
Duan, Xiaochuan ;
Xu, Jiantie ;
Wei, Zengxi ;
Ma, Jianmin ;
Guo, Shaojun ;
Liu, Huakun ;
Dou, Shixue .
SMALL METHODS, 2017, 1 (11)
[6]   Electrostatic properties of few-layer MoS2 films [J].
Hao, Guolin ;
Huang, Zongyu ;
Liu, Yundan ;
Qi, Xiang ;
Ren, Long ;
Peng, Xiangyang ;
Yang, Liwen ;
Wei, Xiaolin ;
Zhong, Jianxin .
AIP ADVANCES, 2013, 3 (04)
[7]   High-Performance Low-Voltage-Driven Phototransistors through CsPbBr3-2D Crystal van der Waals Heterojunctions [J].
Huo, Chengxue ;
Liu, Xuhai ;
Wang, Ziming ;
Song, Xiufeng ;
Zeng, Haibo .
ADVANCED OPTICAL MATERIALS, 2018, 6 (16)
[8]  
Konstantatos G, 2012, NAT NANOTECHNOL, V7, P363, DOI [10.1038/nnano.2012.60, 10.1038/NNANO.2012.60]
[9]  
Koppens FHL, 2014, NAT NANOTECHNOL, V9, P780, DOI [10.1038/NNANO.2014.215, 10.1038/nnano.2014.215]
[10]   Hybrid 2D-0D MoS2-PbS Quantum Dot Photodetectors [J].
Kufer, Dominik ;
Nikitskiy, Ivan ;
Lasanta, Tania ;
Navickaite, Gabriele ;
Koppens, Frank H. L. ;
Konstantatos, Gerasimos .
ADVANCED MATERIALS, 2015, 27 (01) :176-180