On the adjacent-vertex-strongly-distinguishing total coloring of graphs

被引:9
作者
Zhang Zhongfu [1 ,2 ]
Cheng Hui [1 ]
Yao Bing [1 ]
Li Jingwen [3 ]
Chen Xiangen [1 ]
Xu Baogen [4 ]
机构
[1] NW Normal Univ, Coll Math & Informat Sci, Lanzhou 730070, Peoples R China
[2] Lanzhou Univ, Dept Math Appl, Lanzhou 730070, Peoples R China
[3] Lanzhou Univ, Dept Comp Sci, Lanzhou 730070, Peoples R China
[4] E China Jiaotong Univ, Dept Math, Nanchang 330013, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2008年 / 51卷 / 03期
基金
中国国家自然科学基金;
关键词
simple connected graph; proper coloring; adjacent-vertex-strongly-distinguishing total coloring;
D O I
10.1007/s11425-007-0128-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any vertex u epsilon V(G), let T (N) (u) = {u} boolean OR {uv vertical bar uv epsilon E(G), v epsilon v(G)} boolean OR {v epsilon v(G)vertical bar uv epsilon E(G)} and let f be a total k-coloring of G. The total-color neighbor of a vertex u of G is the color set C-f(u) = {f(x) vertical bar x epsilon T-N (u)}. For any two adjacent vertices x and y of V(G) such that C-f(x) not equal C-f(y), we refer to f as a k-avsdt-coloring of G ("avsdt" is the abbreviation of "adjacent-vertex-strongly-distinguishing total"). The avsdt-coloring number of G, denoted by chi(ast)(G), is the minimal number of colors required for a avsdt-coloring of G. In this paper, the avsdt-coloring numbers on some familiar graphs are studied, such as paths, cycles, complete graphs, complete bipartite graphs and so on. We prove Delta(G) + 1 <= chi(ast) (G) <= Delta(G) + 2 for any tree or unique cycle graph G.
引用
收藏
页码:427 / 436
页数:10
相关论文
共 7 条
[1]  
[Anonymous], 1976, GRAPH THEORY APPL
[2]   Vertex distinguishing colorings of graphs with Δ (G)=2 [J].
Balister, PN ;
Bollobás, B ;
Schelp, RH .
DISCRETE MATHEMATICS, 2002, 252 (1-3) :17-29
[3]  
Burris A.C., 1993, THESIS MEMPHIS STATE
[4]   Strong edge colorings of graphs [J].
Favaron, O ;
Li, H ;
Schelp, RH .
DISCRETE MATHEMATICS, 1996, 159 (1-3) :103-109
[5]  
SCHELP R. H., 1997, J GRAPH THEOR, V26, P70
[6]   On adjacent-vertex-distinguishing total coloring of graphs [J].
Zhang, ZF ;
Chen, XE ;
Li, JW ;
Yao, B ;
Lu, XZ ;
Wang, JF .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (03) :289-299
[7]   Adjacent strong edge coloring of graphs [J].
Zhang, ZF ;
Liu, LZ ;
Wang, JF .
APPLIED MATHEMATICS LETTERS, 2002, 15 (05) :623-626