NEW HYBRID CONJUGATE GRADIENT METHOD AS A CONVEX COMBINATION OF LS AND FR METHODS

被引:35
|
作者
Djordjevic, Snezana S. [1 ]
机构
[1] Univ Nis, Fac Technol, Leskovac 16000, Serbia
关键词
hybrid conjugate gradient method; convex combination; Dai-Liao conjugacy condition; Newton direction; GLOBAL CONVERGENCE; UNCONSTRAINED OPTIMIZATION; HESTENES-STIEFEL; ALGORITHM; DESCENT;
D O I
10.1007/s10473-019-0117-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a new hybrid conjugate gradient algorithm for unconstrained optimization. This method is a convex combination of Liu-Storey conjugate gradient method and Fletcher-Reeves conjugate gradient method. We also prove that the search direction of any hybrid conjugate gradient method, which is a convex combination of two conjugate gradient methods, satisfies the famous D-L conjugacy condition and in the same time accords with the Newton direction with the suitable condition. Furthermore, this property doesn't depend on any line search. Next, we also prove that, moduling the value of the parameter t, the Newton direction condition is equivalent to Dai-Liao conjugacy condition. The strong Wolfe line search conditions are used. The global convergence of this new method is proved. Numerical comparisons show that the present hybrid conjugate gradient algorithm is the efficient one.
引用
收藏
页码:214 / 228
页数:15
相关论文
共 50 条
  • [41] Global convergence of a modified LS nonlinear conjugate gradient method
    Liu, Jinkui
    Feng, Yuming
    CEIS 2011, 2011, 15
  • [42] A new adaptive two-parameter conjugate gradient method
    Li, Xiangli
    Mo, Yuanjian
    Jiang, Haiyao
    ENGINEERING OPTIMIZATION, 2025,
  • [43] IMPROVED ADAPTIVE CONVEX COMBINATION OF LMS ALGORITHM BASED ON CONJUGATE GRADIENT METHOD
    Zeng, Leya
    Xu, Hua
    Wang, Tianrui
    EIGHTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2016), 2016, 10033
  • [44] A modified conjugate gradient method for general convex functions
    Abdollahi, Fahimeh
    Fatemi, Masoud
    NUMERICAL ALGORITHMS, 2023, 92 (03) : 1485 - 1502
  • [45] A Hybrid Nonlinear Conjugate Gradient Method
    Liu, Jinkui
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2012, 33 (03) : 195 - 199
  • [46] Hybrid conjugate gradient methods for unconstrained optimization
    Mo, Jiangtao
    Gu, Nengzhu
    Wei, Zengxin
    OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (02) : 297 - 307
  • [47] Global convergence of a modified spectral FR conjugate gradient method
    Du, Shou-qiang
    Chen, Yuan-yuan
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (02) : 766 - 770
  • [48] A new family of conjugate gradient methods for unconstrained optimization
    Li, Ming
    Liu, Hongwei
    Liu, Zexian
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 58 (1-2) : 219 - 234
  • [49] An efficient modified PRP-FR hybrid conjugate gradient method for solving unconstrained optimization problems
    Mtagulwa, Peter
    Kaelo, P.
    APPLIED NUMERICAL MATHEMATICS, 2019, 145 : 111 - 120
  • [50] Some new three-term Hestenes-Stiefel conjugate gradient methods with affine combination
    Dong, Xiao-Liang
    Han, De-Ren
    Ghanbari, Reza
    Li, Xiang-Li
    Dai, Zhi-Feng
    OPTIMIZATION, 2017, 66 (05) : 759 - 776