Parts formulas involving the Fourier-Feynman transform associated with Gaussian paths on Wiener space

被引:5
作者
Chang, Seung Jun [1 ]
Choi, Jae Gil [2 ]
机构
[1] Dankook Univ, Dept Math, Cheonan 330714, South Korea
[2] Dankook Univ, Sch Gen Educ, Cheonan 330714, South Korea
基金
英国科研创新办公室;
关键词
Cameron-Storvick theorem; Gaussian process; Generalized analytic Feynman integral; Generalized analytic Fourier-Feynman transform; First variation; INTEGRAL-TRANSFORMS; CONVOLUTION; FUNCTIONALS;
D O I
10.1007/s43037-019-00005-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Park and Skoug established several integration by parts formulas involving analytic Feynman integrals, analytic Fourier-Feynman transforms, and the first variation of cylinder-type functionals of standard Brownian motion paths in Wiener space C-0[0, T]. In this paper, using a very general Cameron-Storvick theorem on the Wiener space C-0[0, T], we establish various integration by parts formulas involving generalized analytic Feynman integrals, generalized analytic Fourier-Feynman transforms, and the first variation (associated with Gaussian processes) of functionals F on C-0[0, T] having the form F(x) = f (alpha(1), x),..., (alpha(n), x)) for scale-invariant almost every x is an element of C-0[0, T], where (alpha, x) denotes the Paley-Wiener-Zygmund stochastic integral integral(T)(0) alpha(t)dx(t), and {alpha(1),...,alpha(n)} is an orthogonal set of nonzero functions in L-2[0, T]. The Gaussian processes used in this paper are not stationary.
引用
收藏
页码:503 / 523
页数:21
相关论文
共 50 条
[41]   GENERALIZED FOURIER-FEYNMAN TRANSFORMS, CONVOLUTION PRODUCTS, AND FIRST VARIATIONS ON FUNCTION SPACE [J].
Chang, Seung Jun ;
Choi, Jae Gil ;
Skoug, David .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (03) :761-788
[42]   Generalized Fourier-Feynman Transform of Bounded Cylinder Functions on the Function Space Ca,b[0, T] [J].
Choi, Jae Gil .
KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (02) :219-233
[43]   A new approach method to obtain the L1 generalized analytic Fourier-Feynman transform [J].
Chang, Seung Jun ;
Chung, Hyun Soo ;
Lee, Il Yong .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2018, 29 (09) :745-760
[44]   GENERALIZED FIRST VARIATION AND GENERALIZED SEQUENTIAL FOURIER-FEYNMAN TRANSFORM [J].
Kim, Byoung Soo .
KOREAN JOURNAL OF MATHEMATICS, 2023, 31 (04) :521-536
[45]   CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ASSOCIATED WITH INFINITE DIMENSIONAL CONDITIONING FUNCTION [J].
Choi, Jae Gil ;
Shim, Sang Kil .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) :1221-1235
[46]   GENERALIZED SEQUENTIAL CONVOLUTION PRODUCT FOR THE GENERALIZED SEQUENTIAL FOURIER-FEYNMAN TRANSFORM [J].
Kim, Byoung Soo ;
Yoo, Il .
KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (02) :321-332
[47]   GENERALIZED FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTIONS FOR EXPONENTIAL TYPE FUNCTIONS OF GENERALIZED BROWNIAN MOTION PATHS [J].
Choi, Jae Gil .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (04) :1141-1151
[48]   Convolution and the Fourier-Wiener transform on abstract Wiener space [J].
Yoo, I .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (04) :1577-1587
[49]   PARTS FORMULAS INVOLVING INTEGRAL TRANSFORMS ON FUNCTION SPACE [J].
Kim, Bong Jin ;
Kim, Byoung Soo .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 22 (04) :553-564
[50]   Cameron-Storvick theorem associated with Gaussian paths on function space [J].
Choi, Jae Gil .
TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (06) :2746-2758