Parts formulas involving the Fourier-Feynman transform associated with Gaussian paths on Wiener space

被引:5
作者
Chang, Seung Jun [1 ]
Choi, Jae Gil [2 ]
机构
[1] Dankook Univ, Dept Math, Cheonan 330714, South Korea
[2] Dankook Univ, Sch Gen Educ, Cheonan 330714, South Korea
基金
英国科研创新办公室;
关键词
Cameron-Storvick theorem; Gaussian process; Generalized analytic Feynman integral; Generalized analytic Fourier-Feynman transform; First variation; INTEGRAL-TRANSFORMS; CONVOLUTION; FUNCTIONALS;
D O I
10.1007/s43037-019-00005-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Park and Skoug established several integration by parts formulas involving analytic Feynman integrals, analytic Fourier-Feynman transforms, and the first variation of cylinder-type functionals of standard Brownian motion paths in Wiener space C-0[0, T]. In this paper, using a very general Cameron-Storvick theorem on the Wiener space C-0[0, T], we establish various integration by parts formulas involving generalized analytic Feynman integrals, generalized analytic Fourier-Feynman transforms, and the first variation (associated with Gaussian processes) of functionals F on C-0[0, T] having the form F(x) = f (alpha(1), x),..., (alpha(n), x)) for scale-invariant almost every x is an element of C-0[0, T], where (alpha, x) denotes the Paley-Wiener-Zygmund stochastic integral integral(T)(0) alpha(t)dx(t), and {alpha(1),...,alpha(n)} is an orthogonal set of nonzero functions in L-2[0, T]. The Gaussian processes used in this paper are not stationary.
引用
收藏
页码:503 / 523
页数:21
相关论文
共 50 条
[21]   Conditional Fourier-Feynman Transform Given Infinite Dimensional Conditioning Function on Abstract Wiener Space [J].
Choi, Jae Gil ;
Shim, Sang Kil .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (03) :849-868
[22]   Fourier-Feynman transform, convolution and first variation [J].
J. M. Ahn ;
K. S. Chang ;
B. S. Kim ;
I. Yoo .
Acta Mathematica Hungarica, 2003, 100 :215-235
[23]   Generalized Fourier-Feynman transforms and generalized convolution products on Wiener space [J].
Chang, Seung Jun ;
Chung, Hyun Soo ;
Choi, Jae Gil .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (02) :566-579
[24]   Fourier-Feynman transform, convolution and first variation [J].
Ahn, JM ;
Chang, KS ;
Kim, BS ;
Yoo, I .
ACTA MATHEMATICA HUNGARICA, 2003, 100 (03) :215-235
[25]   GENERALIZED FOURIER-FEYNMAN TRANSFORM AND SEQUENTIAL TRANSFORMS ON FUNCTION SPACE [J].
Choi, Jae Gil ;
Chang, Seung Jun .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (05) :1065-1082
[26]   Relationships involving generalized Fourier-Feynman transform, convolution and first variation [J].
Chang, KS ;
Cho, DH ;
Kim, BS ;
Song, TS ;
Yoo, I .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2005, 16 (5-6) :391-405
[27]   The behavior of the first variation under the Fourier-Feynman transform on abstract Wiener spaces [J].
Kim, YS .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2006, 12 (03) :233-242
[28]   FOURIER-FEYNMAN TRANSFORMS, CONVOLUTIONS AND FIRST VARIATIONS ON THE SPACE OF ABSTRACT WIENER SPACE VALUED CONTINUOUS FUNCTIONS [J].
Chang, K. S. ;
Kim, B. S. ;
Song, T. S. ;
Yoo, I. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (03) :789-812
[29]   GENERALIZED SEQUENTIAL FEYNMAN INTEGRAL AND FOURIER-FEYNMAN TRANSFORM [J].
Yoo, Il ;
Kim, Byoung Soo .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) :2251-2268
[30]   Generalized Fourier-Feynman transforms and generalized convolution products on Wiener space II [J].
Shim, Sang Kil ;
Choi, Jae Gil .
ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (02) :439-457