Classification of solvable Lie algebras

被引:64
作者
de Graaf, WA [1 ]
机构
[1] Johann Radon Inst Computat & Appl Math, Linz, Austria
关键词
Lie algebras; classification; Grobner bases;
D O I
10.1080/10586458.2005.10128911
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we describe a simple method for obtaining a classification of small-dimensional solvable Lie algebras. Using this method, we obtain the classification of three- and four-dimensional solvable Lie algebras (over fields of any characteristic). Precise conditions for isomorphism are given.
引用
收藏
页码:15 / 25
页数:11
相关论文
共 10 条
[1]  
BERLEKAMP ER, 1968, ALGEBRAIC CODING THE
[2]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[3]  
COX D, 1992, IDEALS VARIETIES ALG
[4]  
De Graaf W.A., 2000, LIE ALGEBRAS THEORY
[5]  
GERDT VP, 1993, MODERN GROUP ANALYSIS: ADVANCED ANALYTICAL AND COMPUTATIONAL METHODS IN MATHEMATICAL PHYSICS, P245
[6]  
Hartley B., 1970, Rings, modules and linear algebra. A further course in algebra describing the structure of Abelian groups and canonical forms of matrices through the study of rings and modules
[7]  
Mubarakzyanov G. M., 1963, IZV VYSSH UCHEBN ZAV, V35, P104
[8]  
Mubarakzyanov G.M., 1963, IZV VYSSH UCHEBN ZAV, V34, P99
[9]   SOLVABLE LIE-ALGEBRAS OF DIMENSION LESS-THAN-OR-EQUAL-TO 4 OVER PERFECT FIELDS [J].
PATERA, J ;
ZASSENHAUS, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 142 :1-17
[10]   ON THE IDENTIFICATION OF A LIE-ALGEBRA GIVEN BY ITS STRUCTURE CONSTANTS .1. DIRECT DECOMPOSITIONS, LEVI DECOMPOSITIONS, AND NIL RADICALS [J].
RAND, D ;
WINTERNITZ, P ;
ZASSENHAUS, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 109 :197-246