Direct membrane binding and self-interaction contribute to Mmr1 function in mitochondrial inheritance

被引:10
作者
Chen, WeiTing [1 ]
Ping, Holly A. [1 ]
Lackner, Laura L. [1 ]
机构
[1] Northwestern Univ, Dept Mol Biosci, Evanston, IL 60208 USA
基金
美国国家卫生研究院;
关键词
CLASS-V-MYOSIN; MOTOR-PROTEIN; YEAST; SITES; CARDIOLIPIN; MYO2; PHOSPHATIDYLETHANOLAMINE; PHOSPHORYLATION; TRANSLOCATION; ASSOCIATION;
D O I
10.1091/mbc.E18-02-0122
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mitochondrial transport and anchoring mechanisms work in concert to position mitochondria to meet cellular needs. In yeast, Mmr1 functions as a mitochondrial adaptor for Myo2 to facilitate actin-based transport of mitochondria to the bud. Posttransport, Mmr1 is proposed to anchor mitochondria at the bud tip. Although both functions require an interaction between Mmr1 and mitochondria, the molecular basis of the Mmr1-mitochondria interaction is poorly understood. Our in vitro phospholipid binding assays indicate Mmr1 can directly interact with phospholipid membranes. Through structure-function studies we identified an unpredicted membrane-binding domain composed of amino acids 76-195 that is both necessary and sufficient for Mmr1 to interact with mitochondria in vivo and liposomes in vitro. In addition, our structure-function analyses indicate that the coiled-coil domain of Mmr1 is necessary and sufficient for Mmr1 self-interaction and facilitates the polarized localization of the protein. Disrupting either the Mmr1-membrane interaction or Mmr1 self-interaction leads to defects in mitochondrial inheritance. Therefore, direct membrane binding and self-interaction are necessary for Mmr1 function in mitochondrial inheritance and are utilized as a means to spatially and temporally regulate mitochondrial positioning.
引用
收藏
页码:2346 / 2357
页数:12
相关论文
共 54 条
[1]   The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae [J].
Altmann, Katrin ;
Frank, Martina ;
Neumann, Daniel ;
Jakobs, Stefan ;
Westermann, Benedikt .
JOURNAL OF CELL BIOLOGY, 2008, 181 (01) :119-130
[2]  
Boldogh IR, 2004, MOL BIOL CELL, V15, P3994, DOI 10.1091/mbc.e04-01-0053
[3]   Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile [J].
Brink-van der Laan, EV ;
Killian, JA ;
de Kruijff, B .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2004, 1666 (1-2) :275-288
[4]   Yeast mitochondrial division and distribution require the cortical Num1 protein [J].
Cerveny, Kara L. ;
Studer, Seth L. ;
Jensen, Robert E. ;
Sesaki, Hiromi .
DEVELOPMENTAL CELL, 2007, 12 (03) :363-375
[5]   Nerve growth factor signaling regulates motility and docking of axonal mitochondria [J].
Chada, SR ;
Hollenbeck, PJ .
CURRENT BIOLOGY, 2004, 14 (14) :1272-1276
[6]   The PEL1 gene (renamed PGS1) encodes the phosphatidylglycerophosphate synthase of Saccharomyces cerevisiae [J].
Chang, SC ;
Heacock, PN ;
Clancey, CJ ;
Dowhan, W .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (16) :9829-9836
[7]   Loss of Mitochondrial DNA in the Yeast Cardiolipin Synthase crd1 Mutant Leads to Up-regulation of the Protein Kinase Swe1p That Regulates the G2/M Transition [J].
Chen, Shuliang ;
Liu, Dongmei ;
Finley, Russell L., Jr. ;
Greenberg, Miriam L. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (14) :10397-10407
[8]   Active Segregation of Yeast Mitochondria by Myo2 Is Essential and Mediated by Mmr1 and Ypt11 [J].
Chernyakov, Irina ;
Santiago-Tirado, Felipe ;
Bretscher, Anthony .
CURRENT BIOLOGY, 2013, 23 (18) :1818-1824
[9]   Intramitochondrial Transport of Phosphatidic Acid in Yeast by a Lipid Transfer Protein [J].
Connerth, Melanie ;
Tatsuta, Takashi ;
Haag, Mathias ;
Klecker, Till ;
Westermann, Benedikt ;
Langer, Thomas .
SCIENCE, 2012, 338 (6108) :815-818
[10]   Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion [J].
DeVay, Rachel M. ;
Dominguez-Ramirez, Lenin ;
Lackner, Laura L. ;
Hoppins, Suzanne ;
Stahlberg, Henning ;
Nunnari, Jodi .
JOURNAL OF CELL BIOLOGY, 2009, 186 (06) :793-803