Skew group algebras of Calabi-Yau algebras

被引:18
作者
Wu, Q-S. [1 ]
Zhu, C. [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
Skew group algebra; Koszul algebra; Hochschild (co)homology; Homological determinant; Calabi-Yau algebra; A(infinity)-algebra; KOSZUL; DIMENSION-3; DUALITY;
D O I
10.1016/j.jalgebra.2011.05.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Calabi-Yau property of skew group algebras is discussed. It is shown that the skew group algebra A#G of a Koszul Calabi-Yau algebra A with a finite subgroup G of automorphisms of A is Calabi-Yau if and only if G is a finite subgroup of the special linear group SL(A), which is defined by means of the homological determinant. Using the A(infinity)-algebra structure on the Yoneda algebra, some results in Bocklandt et al. (2010) [BSW] are generalized, say, every connected graded p-Koszul Calabi-Yau algebra is derived from a superpotential. The superpotential for the skew group algebra A#G is also constructed. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:53 / 76
页数:24
相关论文
共 50 条
  • [1] Stably Calabi-Yau algebras and skew group algebras
    Yu XiaoLan
    Lu DiMing
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (07) : 1343 - 1356
  • [2] Stably Calabi-Yau algebras and skew group algebras
    YU XiaoLan & LU DiMing Department of Mathematics
    Science China(Mathematics), 2011, 54 (07) : 1343 - 1356
  • [3] Stably Calabi-Yau algebras and skew group algebras
    XiaoLan Yu
    DiMing Lu
    Science China Mathematics, 2011, 54 : 1343 - 1356
  • [4] Hopf Action on Calabi-Yau algebras
    Liu, L. -Y.
    Wu, Q. -S.
    Zhu, C.
    NEW TRENDS IN NONCOMMUTATIVE ALGEBRA, 2012, 562 : 189 - 209
  • [5] Skew Calabi-Yau algebras and homological identities
    Reyes, Manuel
    Rogalski, Daniel
    Zhang, James J.
    ADVANCES IN MATHEMATICS, 2014, 264 : 308 - 354
  • [6] Smash products of Calabi-Yau algebras by Hopf algebras
    Le Meur, Patrick
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2019, 13 (03) : 887 - 961
  • [7] Calabi-Yau algebras and superpotentials
    Van den Bergh, Michel
    SELECTA MATHEMATICA-NEW SERIES, 2015, 21 (02): : 555 - 603
  • [8] Calabi-Yau algebras and their deformations
    He, Ji-Wei
    Van Oystaeyen, Fred
    Zhang, Yinhuo
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (03): : 335 - 347
  • [9] Calabi-Yau Frobenius algebras
    Eu, Ching-Hwa
    Schedler, Travis
    JOURNAL OF ALGEBRA, 2009, 321 (03) : 774 - 815
  • [10] Calabi-Yau algebras and superpotentials
    Michel Van den Bergh
    Selecta Mathematica, 2015, 21 : 555 - 603