Existence of a solution "in the Large" for ocean dynamics equations

被引:55
作者
Kobelkov, Georgy M. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119899, Russia
基金
俄罗斯基础研究基金会;
关键词
ocean dynamics equations; primitive equations; nonlinear partial differential equations;
D O I
10.1007/s00021-006-0228-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the system of equations describing the large-scale ocean dynamics, an existence and uniqueness theorem is proved "in the large". This system is obtained from the 3D Navier-Stokes equations by changing the equation for the vertical velocity component mu(3) under the assumption of smallness of a domain in z-direction, and a nonlinear equation for the density function p is added. More precisely, it is proved that for an arbitrary time interval [0, T], any viscosity coefficients and any initial conditions mu(0) = (mu(1), mu(2)) epsilon W-2(2) (Omega), integral(1)(0)(partial derivative(1)mu(1) + partial derivative(2)mu(2))dz =0, rho(0) epsilon W-2(2)(Omega), a weak solution exists and is unique and mu(x3) epsilon W-2(1)(QT), rho(x3) (QT) and the norms parallel to del(alpha)parallel to(Omega), parallel to del(rho)parallel to(Omega)are continuous in t.
引用
收藏
页码:588 / 610
页数:23
相关论文
共 50 条
[41]   Existence and Regularity Results for the Inviscid Primitive Equations with Lateral Periodicity [J].
Hamouda, Makram ;
Jung, Chang-Yeol ;
Temam, Roger .
APPLIED MATHEMATICS AND OPTIMIZATION, 2016, 73 (03) :501-522
[42]   An Existence Theorem for Generalized von Kármán Equations [J].
Philippe G. Ciarlet ;
Liliana Gratie ;
Nicholas Sabu .
Journal of elasticity and the physical science of solids, 2001, 62 :239-248
[43]   Existence and Regularity Results for the Inviscid Primitive Equations with Lateral Periodicity [J].
Makram Hamouda ;
Chang-Yeol Jung ;
Roger Temam .
Applied Mathematics & Optimization, 2016, 73 :501-522
[44]   On the existence of solutions to the generalized Marguerre-von Karman equations [J].
Ciarlet, PG ;
Gratie, L .
MATHEMATICS AND MECHANICS OF SOLIDS, 2006, 11 (01) :83-100
[45]   On ellipticity of balance equations for atmospheric dynamics [J].
Bourchtein, Andrei ;
Bourchtein, Ludmila .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (04) :1017-1026
[46]   On mathematical problems for the primitive equations of the ocean: the mesoscale midlatitude case [J].
Lions, JL ;
Temam, R ;
Wang, SH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 40 (1-8) :439-482
[48]   DECOMPOSITION SOLUTION OF NONLINEAR HYPERBOLIC-EQUATIONS [J].
ADOMIAN, G .
MATHEMATICAL AND COMPUTER MODELLING, 1990, 14 :80-82
[49]   A Bochev-Dohrmann-Gunzburger stabilization method for the primitive equations of the ocean [J].
Chacon Rebollo, Tomas ;
Gomez Marmol, Macarena ;
Sanchez Munoz, Isabel .
APPLIED MATHEMATICS LETTERS, 2013, 26 (04) :413-417
[50]   A two-grid finite difference method for the primitive equations of the ocean [J].
Medjo, T. Tachim ;
Temam, R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (03) :1034-1056