Symmetry Breaking Soliton, Breather, and Lump Solutions of a Nonlocal Kadomtsev-Petviashvili System

被引:5
作者
Wu, Hong-Yu [1 ,2 ]
Fei, Jin-Xi [1 ]
Ma, Zheng-Yi [3 ,4 ,5 ]
Chen, Jun-Chao [3 ,4 ]
Ma, Wen-Xiu [2 ,6 ,7 ,8 ,9 ,10 ]
机构
[1] Lishui Univ, Dept Photoelect Engn, Lishui 323000, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[3] Lishui Univ, Inst Nonlinear Anal, Lishui 323000, Peoples R China
[4] Lishui Univ, Dept Math, Lishui 323000, Peoples R China
[5] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310018, Peoples R China
[6] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[7] King Abdulaziz Univ, Dept Math, Jeddah, Saudi Arabia
[8] South China Univ Technol, Sch Math, Guangzhou 510640, Peoples R China
[9] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[10] North West Univ, Dept Math Sci, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
基金
中国国家自然科学基金;
关键词
EQUATION; TRANSFORMATIONS; INVARIANT; EVOLUTION; WAVES;
D O I
10.1155/2020/6423205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Kadomtsev-Petviashvili equation is one of the well-studied models of nonlinear waves in dispersive media and in multicomponent plasmas. In this paper, the coupled Alice-Bob system of the Kadomtsev-Petviashvili equation is first constructed via the parity with a shift of the space variable x and time reversal with a delay. By introducing an extended Backlund transformation, symmetry breaking soliton, symmetry breaking breather, and symmetry breaking lump solutions for this system are presented through the established Hirota bilinear form. According to the corresponding constants in the involved ansatz function, a few fascinating symmetry breaking structures of the presented explicit solutions are shown.
引用
收藏
页数:13
相关论文
共 30 条
  • [1] Ablowitz M.J., 1981, SOLITONS INVERSE SCA
  • [2] Integrable Nonlocal Nonlinear Schrodinger Equation
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (06)
  • [3] A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1.
    ABLOWITZ, MJ
    RAMANI, A
    SEGUR, H
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) : 715 - 721
  • [4] Dai CQ, 2018, NONLINEAR DYNAM, V92, P1351, DOI 10.1007/s11071-018-4130-4
  • [5] Exact periodic solitary-wave solution for KdV equation
    School of Mathematics and Physics, Yunnan University, Kunming 650091, China
    不详
    不详
    [J]. Chin. Phys. Lett., 2008, 5 (1531-1533): : 1531 - 1533
  • [6] Evolution of solitary waves in multicomponent plasmas
    Das, GC
    Sarma, J
    [J]. CHAOS SOLITONS & FRACTALS, 1998, 9 (06) : 901 - 911
  • [7] ANALYTICAL SOLUTIONS OF DIFFERENTIAL-DIFFERENCE SINE-GORDON EQUATION
    Ding, Da-Jiang
    Jin, Di-Qing
    Dai, Chao-Qing
    [J]. THERMAL SCIENCE, 2017, 21 (04): : 1701 - 1705
  • [9] Hirota R., 2004, The Direct Method in Soliton Theory
  • [10] Exact PSTd invariant and PSTd symmetric breaking solutions, symmetry reductions and Backlund transformations for an AB-KdV system
    Jia, Man
    Lou, Sen Yue
    [J]. PHYSICS LETTERS A, 2018, 382 (17) : 1157 - 1166