An effective approach to classify epileptic EEG signal using local neighbor gradient pattern transformation methods

被引:14
作者
Sairamya, N. J. [1 ]
George, S. Thomas [1 ]
Balakrishnan, R. [2 ]
Subathra, M. S. P. [1 ]
机构
[1] Karunya Inst Technol & Sci, Dept Elect Sci, Coimbatore, Tamil Nadu, India
[2] PSG Inst Med Sci & Res, Dept Neurol, Coimbatore, Tamil Nadu, India
关键词
Local neighbor gradient pattern (LNGP); Symmetrically weighted local neighbor gradient pattern (SWLNGP); Electroencephalographic (EEG); Epileptic detection; Artificial neural network (ANN); SEIZURE DETECTION; NEURAL-NETWORK; AUTOMATIC IDENTIFICATION; APPROXIMATE ENTROPY; FEATURE-EXTRACTION; BINARY PATTERN; CLASSIFICATION; DIAGNOSIS; DOMAIN;
D O I
10.1007/s13246-018-0697-9
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Electroencephalographic (EEG) signal records the neuronal activity in the brain and it is used in the diagnosis of epileptic seizure activities. Human inspection of non-stationary EEG signal for diagnosing epilepsy is cumbersome, time-consuming and inaccurate. In this paper an effective automatic approach to detect epilepsy using two feature extraction techniques namely local neighbor gradient pattern (LNGP) and symmetrically weighted local neighbor gradient pattern (SWLNGP) are proposed. Extracted features are fed into machine learning algorithms like k-nearest neighbor (k-NN), quadratic linear discriminant analysis, support vector machine, ensemble classifier and artificial neural network (ANN) to classify the EEG signals. In this study, the classification performance for 17 different cases using 10-fold cross validation with the following classification problems are executed (i) healthy-ictal, (ii) interictal-ictal, (iii) healthy-interictal, (iv) seizure free-ictal and (v) healthy-interictal-ictal. The experimental result shows that in all the cases LNGP and SWLNGP attained higher classification accuracy using ANN. Further, the computational performance and the classification accuracy of the proposed methods are compared with the recently proposed techniques for epileptic detection. It shows that the performance of LNGP and SWLNGP method with ANN classifier are superior over other recently proposed techniques for the aforesaid problems. Hence, the proposed methods are simple, fast, reliable and easily implementable for real-time epileptic detection.
引用
收藏
页码:1029 / 1046
页数:18
相关论文
共 40 条
[1]   Application of entropies for automated diagnosis of epilepsy using EEG signals: A review [J].
Acharya, U. Rajendra ;
Fujita, H. ;
Sudarshan, Vidya K. ;
Bhat, Shreya ;
Koh, Joel E. W. .
KNOWLEDGE-BASED SYSTEMS, 2015, 88 :85-96
[2]   Epileptic EEG detection using the linear prediction error energy [J].
Altunay, Semih ;
Telatar, Ziya ;
Erogul, Osman .
EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (08) :5661-5665
[3]   Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state [J].
Andrzejak, RG ;
Lehnertz, K ;
Mormann, F ;
Rieke, C ;
David, P ;
Elger, CE .
PHYSICAL REVIEW E, 2001, 64 (06) :8-061907
[4]  
Chatlani N, 2010, EUR SIGNAL PR CONF, P95
[5]   Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis [J].
Faust, Oliver ;
Acharya, U. Rajendra ;
Adeli, Hojjat ;
Adeli, Amir .
SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2015, 26 :56-64
[6]   AUTOMATIC IDENTIFICATION OF EPILEPTIC AND BACKGROUND EEG SIGNALS USING FREQUENCY DOMAIN PARAMETERS [J].
Faust, Oliver ;
Acharya, U. Rajendra ;
Min, Lim Choo ;
Sputh, Bernhard H. C. .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2010, 20 (02) :159-176
[7]   Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection [J].
Ghosh-Dastidar, Samanwoy ;
Adeli, Hojat ;
Dadmehr, Nahid .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (02) :512-518
[8]   Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection [J].
Ghosh-Dastidar, Samanwoy ;
Adeli, Hojat ;
Dadmehr, Nahid .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (09) :1545-1551
[9]   Recurrent neural networks employing Lyapunov exponents for EEG signals classification [J].
Güler, NF ;
Übeyli, ED ;
Güler, I .
EXPERT SYSTEMS WITH APPLICATIONS, 2005, 29 (03) :506-514
[10]   Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks [J].
Guo, Ling ;
Rivero, Daniel ;
Pazos, Alejandro .
JOURNAL OF NEUROSCIENCE METHODS, 2010, 193 (01) :156-163