Approximate analytical solutions of nonlocal fractional boundary value problems

被引:19
作者
Li, Xiuying [1 ]
Wu, Boying [2 ]
机构
[1] Changshu Inst Technol, Dept Math, Suzhou 215500, Jiangsu, Peoples R China
[2] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Analytical method; Fractional boundary value problems; Nonlocal boundary conditions; Approximate solutions; REPRODUCING KERNEL-METHOD; DIFFERENTIAL-EQUATIONS; POSITIVE SOLUTIONS; UNIQUENESS; EXISTENCE;
D O I
10.1016/j.apm.2014.09.035
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new computational method is proposed for solving fractional differential equations with nonlocal boundary conditions based on the reproducing kernel method (RKM). The present method can avoid finding a reproducing kernel satisfying nonlocal boundary conditions. Four numerical examples are provided to demonstrate the accuracy and efficiency of the method. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1717 / 1724
页数:8
相关论文
共 29 条
[1]   Application of Reproducing Kernel Method for Solving Nonlinear Fredholm-Volterra Integrodifferential Equations [J].
Abu Arqub, Omar ;
Al-Smadi, Mohammed ;
Momani, Shaher .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[2]   On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order [J].
Ahmad, Bashir ;
Sivasundaram, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (02) :480-487
[3]   Numerical solution of eighth order boundary value problems in reproducing Kernel space [J].
Akram, Ghazala ;
Rehman, Hamood Ur .
NUMERICAL ALGORITHMS, 2013, 62 (03) :527-540
[4]  
[Anonymous], 1988, PITMAN RES NOTES MAT
[5]  
[Anonymous], 2004, REPRODUCING KERNEL H, DOI DOI 10.1007/978-1-4419-9096-9
[6]  
[Anonymous], 2012, APPL MATH SCI
[7]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[8]   On positive solutions of a nonlocal fractional boundary value problem [J].
Bai, Zhanbing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :916-924
[9]   Reproducing Kernel Hilbert Spaces and fractal interpolation [J].
Bouboulis, P. ;
Mavroforakis, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (12) :3425-3434
[10]   Positive solutions of nonlinear fractional differential equations with integral boundary value conditions [J].
Cabada, Alberto ;
Wang, Guotao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) :403-411