Strain Engineering for the Kapitza Resistance of the ZrO2/α-Al2O3 and YSZ/α-Al2O3 Interfaces

被引:4
|
作者
Xue, Yixuan [1 ]
Jiang, Jin-Wu [1 ]
机构
[1] Shanghai Univ, Sch Mech & Engn Sci, Shanghai Inst Appl Math & Mech, Shanghai Key Lab Mech Energy Engn, Shanghai 200072, Peoples R China
来源
ACTA MECHANICA SOLIDA SINICA | 2022年 / 35卷 / 01期
基金
中国国家自然科学基金;
关键词
Kapitza resistance; Compressive strain; Temperature; Size; YTTRIA-STABILIZED ZIRCONIA; THERMAL BARRIER COATINGS; MOLECULAR-DYNAMICS; CONDUCTIVITY; CONDUCTANCE; SPALLATION; PHOSPHORENE; MECHANISMS; SAPPHIRE; HELIUM;
D O I
10.1007/s10338-021-00266-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Kapitza resistance is of fundamental importance for the thermal stability of the interface between the ceramic top coat and the thermal growth oxide layer in the thermal barrier coating structure, which is widely used to protect high-temperature components in current gas turbine engines. The top coat typically consists of the ZrO2 partially stabilized by 8% Y2O3 (YSZ), and the main component of the thermal growth oxide is alpha-Al2O3. In this work, the Kapitza resistance is found to be a small value of 0.69 m(2).K/GW for the YSZ/alpha-Al2O3 interface based on the heat dissipation simulation method. It indicates that the localization of thermal energy is rather weak, which is beneficial for the thermal stability of the YSZ/alpha-Al2O3 interface. This Kapitza resistance can be further reduced to 0.50 m(2) . K/GW by a mechanical or thermal compressive strain of 8%. To explore the underlying mechanism for this strain effect, we analyze the phonon vibration and the microscopic deformation in the interface region. It is revealed that the interface becomes denser through the compression-induced twisting of some Al-OZr and Al-OAl chemical bonds in the interface region, which is responsible for the reduction in the Kapitza resistance. The temperature effect and crystal size effect on the Kapitza resistance of the YSZ/alpha-Al2O3 interface are also systematically studied. These findings shall provide valuable information for further understanding of the thermal conductivity and thermal stability of the thermal barrier coating structures.
引用
收藏
页码:101 / 112
页数:12
相关论文
共 50 条
  • [21] Effects of SiC, Al2O3, and ZrO2 particles on the LBMed characteristics of Al/SiC, Al/Al2O3, and Al/ZrO2 MMCs prepared by stir casting process
    Kumar, Vinod
    Sharma, Vikas
    PARTICULATE SCIENCE AND TECHNOLOGY, 2019, 37 (06) : 766 - 776
  • [22] Thermal Shock Resistance of Al2O3/ZrO2 (Y2O3) Composites
    Ma Weimin
    Wen Lei
    Sun Xudong
    Cui Tong
    Qiu Guanming
    JOURNAL OF RARE EARTHS, 2007, 25 : 53 - 57
  • [23] Thermal Shock Resistance of ZrO2 Fiber/Al2O3 Ceramics
    Hou, Xian Qin
    Liu, Jian Ye
    Ge, He Yi
    EMERGING FOCUS ON ADVANCED MATERIALS, PTS 1 AND 2, 2011, 306-307 : 754 - 757
  • [24] Thermal Shock Resistance of Al2O3/ZrO2(Y2O3) Composites
    Department of Materials Science and Engineering, Shenyang Institute of Chemical Technology, Shenyang, 110142, China
    不详
    不详
    不详
    J Rare Earth, 2007, SUPPL. 1 (53-57):
  • [25] Laser stereolithography of ZrO2 toughened Al2O3
    Licciulli, A
    Corcione, CE
    Greco, A
    Amicarelli, V
    Maffezzoli, A
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2005, 25 (09) : 1581 - 1589
  • [26] Effect of ZrO2 on phase transformation of Al2O3
    Ipek, M.
    Zeytin, S.
    Bindal, C.
    CERAMICS INTERNATIONAL, 2010, 36 (03) : 1159 - 1163
  • [27] Al2O3—ZrO2陶瓷的研究
    陈锋
    方莉俐
    磨料磨具与磨削, 1994, (04) : 22 - 25
  • [28] ZrO2 – Al2O3 ceramic with eutectic additives
    A. A. Evteev
    N. A. Makarov
    D. O. Lemeshev
    S. V. Zhitnyuk
    Glass and Ceramics, 2011, 68 : 258 - 262
  • [29] Phase transformation in the Al2O3–ZrO2 system
    L Gao
    Q Liu
    J. S Hong
    H Miyamoto
    S. D De La Torre
    A Kakitsuji
    K Liddell
    D. P Thompson
    Journal of Materials Science, 1998, 33 : 1399 - 1403
  • [30] EFFECT OF ZRO2 INCLUSIONS ON THE SINTERABILITY OF AL2O3
    LANGE, FF
    YAMAGUCHI, T
    DAVIS, BI
    MORGAN, PED
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1988, 71 (06) : 446 - 448