The future of the carbon cycle:: review, calcification response, ballast and feedback on atmospheric CO2

被引:68
作者
Barker, S [1 ]
Higgins, JA [1 ]
Elderfield, H [1 ]
机构
[1] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2003年 / 361卷 / 1810期
关键词
climate change; carbon dioxide; oceans; calcification;
D O I
10.1098/rsta.2003.1238
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The operation of the carbon cycle forms an important part of the processes relevant to future changes in atmospheric carbon dioxide. The balance of carbon between terrestrial and oceanic reservoirs is an important factor and here we focus in particular on the oceans. Future changes in the carbon cycle that may affect air-sea partitioning Of CO2 are difficult to quantify but the palaeoceanographic record and modern observational studies provide important evidence of what variations might occur. These include changes in surface nutrient use, the oceanic inventory of nutrients, and the elemental composition and rain-rate ratio of marine particles. Recent work has identified two inter-linked processes of potential importance that we consider in some detail: the response of marine calcification to changes in surface water CO2 and the association of particulate organic carbon with ballast minerals, in particular biogenic calcite. We review evidence from corals, coccolithophores and foraminifera, which suggests that the response of reduced calcification provides a negative feedback on rising atmospheric CO2. We then use a box model to demonstrate how the calcification response may affect the organic carbon rain rate through the ballast effect. The ballast effect on export fluxes of organic and inorganic carbon acts to counteract the negative calcification response to increased CO2. Thus, two oceanic buffers exert a significant control on ocean-atmosphere carbonate chemistry: the thermodynamic CO2 buffer; and the ballast/calcification buffer. Just how tightly coupled the rain-rate ratio of CaCO3/C-org is to fluxes of ballast minerals is an important question for future research.
引用
收藏
页码:1977 / 1998
页数:22
相关论文
共 58 条
[1]   What caused the glacial/interglacial atmospheric pCO2 cycles? [J].
Archer, D ;
Winguth, A ;
Lea, D ;
Mahowald, N .
REVIEWS OF GEOPHYSICS, 2000, 38 (02) :159-189
[2]   MODELING THE CALCITE LYSOCLINE [J].
ARCHER, D .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1991, 96 (C9) :17037-17050
[3]   EFFECT OF DEEP-SEA SEDIMENTARY CALCITE PRESERVATION ON ATMOSPHERIC CO2 CONCENTRATION [J].
ARCHER, D ;
MAIERREIMER, E .
NATURE, 1994, 367 (6460) :260-263
[4]   A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals [J].
Armstrong, RA ;
Lee, C ;
Hedges, JI ;
Honjo, S ;
Wakeham, SG .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2001, 49 (1-3) :219-236
[5]   Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2 [J].
Barker, S ;
Elderfield, H .
SCIENCE, 2002, 297 (5582) :833-836
[6]  
BARKER S, 2002, THESIS U CAMBRIDGE
[7]  
BARNOLA JM, 1999, TRENDS COMPENDIUM DA
[8]   Alkalinity changes in the Sargasso Sea: Geochemical evidence of calcification? [J].
Bates, NR ;
Michaels, AF ;
Knap, AH .
MARINE CHEMISTRY, 1996, 51 (04) :347-358
[9]  
Bijma J., 1999, USE PROXIES PALEOCEA, P489, DOI [10.1007/978-3-642-58646-0, DOI 10.1007/978-3-642-58646-0_20]
[10]   THE CHRONOLOGY OF THE LAST DEGLACIATION: IMPLICATIONS TO THE CAUSE OF THE YOUNGER DRYAS EVENT [J].
Broecker, W. S. ;
Andree, M. ;
Wolfli, W. ;
Oeschger, H. ;
Bonani, G. ;
Kennett, J. ;
Peteet, D. .
PALEOCEANOGRAPHY, 1988, 3 (01) :1-19