Two-dimensional halide perovskite lateral epitaxial heterostructures

被引:256
作者
Shi, Enzheng [1 ]
Yuan, Biao [2 ]
Shiring, Stephen B. [1 ]
Gao, Yao [1 ]
Akriti [1 ]
Guo, Yunfan [3 ]
Su, Cong [4 ]
Lai, Minliang [5 ]
Yang, Peidong [5 ,6 ,7 ]
Kong, Jing [3 ]
Savoie, Brett M. [1 ]
Yu, Yi [2 ]
Dou, Letian [1 ,8 ]
机构
[1] Purdue Univ, Davidson Sch Chem Engn, W Lafayette, IN 47907 USA
[2] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai, Peoples R China
[3] MIT, Dept Elect Engn & Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] MIT, RLE, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Univ Calif Berkeley, Dept Chem, Berkeley, CA USA
[6] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA USA
[7] Kavli Energy NanoSci Inst, Berkeley, CA USA
[8] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
BASIS-SETS; NANOCRYSTALS; TRANSITION; GROWTH;
D O I
10.1038/s41586-020-2219-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Epitaxial heterostructures based on oxide perovskites and III-V, II-VI and transition metal dichalcogenide semiconductors form the foundation of modern electronics and optoelectronics(1-7). Halide perovskites-an emerging family of tunable semiconductors with desirable properties-are attractive for applications such as solution-processed solar cells, light-emitting diodes, detectors and lasers(8-15). Their inherently soft crystal lattice allows greater tolerance to lattice mismatch, making them promising for heterostructure formation and semiconductor integration(16,17). Atomically sharp epitaxial interfaces are necessary to improve performance and for device miniaturization. However, epitaxial growth of atomically sharp heterostructures of halide perovskites has not yet been achieved, owing to their high intrinsic ion mobility, which leads to interdiffusion and large junction widths(18-21), and owing to their poor chemical stability, which leads to decomposition of prior layers during the fabrication of subsequent layers. Therefore, understanding the origins of this instability and identifying effective approaches to suppress ion diffusion are of great importance(22-26). Here we report an effective strategy to substantially inhibit in-plane ion diffusion in two-dimensional halide perovskites by incorporating rigid pi-conjugated organic ligands. We demonstrate highly stable and tunable lateral epitaxial heterostructures, multiheterostructures and superlattices. Near-atomically sharp interfaces and epitaxial growth are revealed by low-dose aberration-corrected high-resolution transmission electron microscopy. Molecular dynamics simulations confirm the reduced heterostructure disorder and larger vacancy formation energies of the two-dimensional perovskites in the presence of conjugated ligands. These findings provide insights into the immobilization and stabilization of halide perovskite semiconductors and demonstrate a materials platform for complex and molecularly thin superlattices, devices and integrated circuits. An epitaxial growth strategy that improves the stability of two-dimensional halide perovskites by inhibiting ion diffusion in their heterostructures using rigid pi-conjugated ligands is demonstrated, and shows near-atomically sharp interfaces.
引用
收藏
页码:614 / +
页数:10
相关论文
共 55 条
[1]   Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures [J].
Ahn, CH ;
Rabe, KM ;
Triscone, JM .
SCIENCE, 2004, 303 (5657) :488-491
[2]   Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions [J].
Akkerman, Quinten A. ;
D'Innocenzo, Valerio ;
Accornero, Sara ;
Scarpellini, Alice ;
Petrozza, Annamaria ;
Prato, Mirko ;
Manna, Liberato .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (32) :10276-10281
[3]   Planar perovskite solar cells with long-term stability using ionic liquid additives [J].
Bai, Sai ;
Da, Peimei ;
Li, Cheng ;
Wang, Zhiping ;
Yuan, Zhongcheng ;
Fu, Fan ;
Kawecki, Maciej ;
Liu, Xianjie ;
Sakai, Nobuya ;
Wang, Jacob Tse-Wei ;
Huettner, Sven ;
Buecheler, Stephan ;
Fahlman, Mats ;
Gao, Feng ;
Snaith, Henry J. .
NATURE, 2019, 571 (7764) :245-+
[4]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[5]   Hybrid Organic-Inorganic Perovskites (HOIPs): Opportunities and Challenges [J].
Berry, Joseph ;
Buonassisi, Tonio ;
Egger, David A. ;
Hodes, Gary ;
Kronik, Leeor ;
Loo, Yueh-Lin ;
Lubomirsky, Igor ;
Marder, Seth R. ;
Mastai, Yitzhak ;
Miller, Joel S. ;
Mitzi, David B. ;
Paz, Yaron ;
Rappe, Andrew M. ;
Riess, Ilan ;
Rybtchinski, Boris ;
Stafsudd, Oscar ;
Stevanovic, Vladan ;
Toney, Michael F. ;
Zitoun, David ;
Kahn, Antoine ;
Ginley, David ;
Cahen, David .
ADVANCED MATERIALS, 2015, 27 (35) :5102-5112
[6]  
Borg R.J., 1988, INTRO SOLID STATE DI
[7]   Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures [J].
Cao, Yu ;
Wang, Nana ;
Tian, He ;
Guo, Jingshu ;
Wei, Yingqiang ;
Chen, Hong ;
Miao, Yanfeng ;
Zou, Wei ;
Pan, Kang ;
He, Yarong ;
Cao, Hui ;
Ke, You ;
Xu, Mengmeng ;
Wang, Ying ;
Yang, Ming ;
Du, Kai ;
Fu, Zewu ;
Kong, Decheng ;
Dai, Daoxin ;
Jin, Yizheng ;
Li, Gongqiang ;
Li, Hai ;
Peng, Qiming ;
Wang, Jianpu ;
Huang, Wei .
NATURE, 2018, 562 (7726) :249-+
[8]   Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections [J].
Chai, Jeng-Da ;
Head-Gordon, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (44) :6615-6620
[9]   Layered Halide Double Perovskites: Dimensional Reduction of Cs2AgBiBr6 [J].
Connor, Bridget A. ;
Leppert, Linn ;
Smith, Matthew D. ;
Neaton, Jeffrey B. ;
Karunadasa, Hemamala I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (15) :5235-5240
[10]   Broadband Emission in Two-Dimensional Hybrid Perovskites: The Role of Structural Deformation [J].
Cortecchia, Daniele ;
Neutzner, Stefanie ;
Kandada, Ajay Ram Srimath ;
Mosconi, Edoardo ;
Meggiolaro, Daniele ;
De Angelis, Filippo ;
Soci, Cesare ;
Petrozza, Annamaria .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (01) :39-42