On Disrupting the Na+-Ion/Vacancy Ordering in P2-Type Sodium-Manganese-Nickel Oxide Cathodes for Na+-Ion Batteries

被引:74
|
作者
Gutierrez, Arturo [1 ]
Dose, Wesley M. [1 ]
Borkiewicz, Olaf [2 ]
Guo, Fangmin [2 ]
Avdeev, Maxim [3 ]
Kim, Soojeong [4 ]
Fister, Timothy T. [4 ]
Ren, Yang [2 ]
Bareno, Javier [1 ]
Johnson, Christopher S. [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Electrochem Energy Storage Dept, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60437 USA
[3] Argonne Natl Lab, Mol Scale Sci Dept, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60437 USA
[4] Australian Nucl Sci & Technol Org, Australian Ctr Neutron Scattering, Locked Bag 2001, Lucas Heights, NSW 2234, Australia
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2018年 / 122卷 / 41期
关键词
ELECTRODE MATERIALS; HIGH-VOLTAGE; HIGH-POWER; LITHIUM; TRANSITION; NI; MN; CO; CAPACITY;
D O I
10.1021/acs.jpcc.8b05537
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An investigation of the electrochemical and structural properties of layered P2-Na0.62Mn0.75Ni0.25O2 is presented. The effect of changing the Mn/Ni ratio (3:1) from what is found in Na0.67Mn0.67Ni0.33O2(2:1) and consequently the introduction of a third metal center (Mn3+) was investigated. X-ray powder diffraction (in situ and ex situ) revealed the lack of Na+-ion/vacancy ordering at the relevant sodium contents (x = 0.33, 0.5, and 0.67), Mn3+ in Na0.62Mn0.75Ni0.25O2 introduces defects into the Ni-Mn interplane charge order that in turn disrupts the ordering within the Na-plane. The material underwent P2-O2 and P2-P2' phase transitions at high (4.2 V) and low (similar to 1.85 V) voltages, respectively. The material was tested at several different voltage ranges to understand the effect of the phase transitions on the capacity retention. Interestingly, the inclusion of both phase transitions demonstrated comparable cycling performance to when both phase transitions were excluded. Last, excellent rate performance was demonstrated between 4.3 and 1.5 V with a specific capacity of 120 mA h/g delivered at 500 mA/g current density.
引用
收藏
页码:23251 / 23260
页数:10
相关论文
共 50 条
  • [1] Na-deficient P2-type layered oxide cathodes for practical sodium-ion batteries
    Huang, Yu
    Zeng, Weixiong
    Li, Kui
    Zhu, Xiaobo
    MICROSTRUCTURES, 2024, 4 (03):
  • [2] Sodium Manganese Oxide Thin Films as Cathodes for Na-Ion Batteries
    Baggetto, Loic
    Carroll, Kyler J.
    Unocic, Raymond R.
    Bridges, Craig A.
    Meng, Ying Shirley
    Veith, Gabriel M.
    BATTERY CHEMISTRIES BEYOND LITHIUM ION, 2014, 58 (12): : 47 - 57
  • [3] Sodium compensation and interface protection effects of Na3PS3O for sodium-ion batteries with P2-type oxide cathodes
    Liao, Jihui
    Zhang, Fengping
    Lu, Yao
    Ren, Jian
    Wu, Wenwei
    Xu, Zhen
    Wu, Xuehang
    CHEMICAL ENGINEERING JOURNAL, 2022, 437
  • [4] New Insights into Anionic Redox in P2-Type Oxide Cathodes for Sodium-Ion Batteries
    Huang, Zhi-Xiong
    Li, Kai
    Cao, Jun-Ming
    Zhang, Kai-Yang
    Liu, Han-Hao
    Guo, Jin-Zhi
    Liu, Yan
    Wang, Ting
    Dai, Dongmei
    Zhang, Xin-Yi
    Geng, Hongbo
    Wu, Xing-Long
    NANO LETTERS, 2024, 24 (43) : 13615 - 13623
  • [5] Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries
    Wu, Xuehang
    Xu, Gui-Liang
    Zhong, Guiming
    Gong, Zhengliang
    McDonald, Matthew J.
    Zheng, Shiyao
    Fu, Riqiang
    Chen, Zonghai
    Amine, Khalil
    Yang, Yong
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (34) : 22227 - 22237
  • [6] A dual strategy of Na+/vacancy disorder and high Na to construct a P2-type cathode for high-stability sodium-ion batteries
    Geng, Lei
    Wu, Lan
    Tan, Hongjie
    Wang, Meng
    Liu, Zhe
    Mou, Lianshan
    Shang, Yongjian
    Yan, De
    Peng, Shanglong
    NANOSCALE, 2024, 16 (19) : 9488 - 9495
  • [7] A study on electrochemical properties of P2-type Na-Mn-Co-Cr-O cathodes for sodium-ion batteries
    Wang, Yanzhi
    Tang, Jiantao
    Yang, Xiduo
    Huang, Weiwei
    INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (03): : 577 - 584
  • [8] Tailoring high Na content in P2-type layered oxide cathodes via Cu-Li dual doping for sodium-ion batteries
    Anilkumar, Ashmitha
    Nair, Neeraja
    Nair, Shantikumar, V
    Baskar, Senthilkumar
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [9] Na3Zr2Si2PO12: A Stable Na+-Ion Solid Electrolyte for Solid-State Batteries
    Zhang, Zhizhen
    Wenzel, Sebastian
    Zhu, Yizhou
    Sann, Joachim
    Shen, Lin
    Yang, Jing
    Yao, Xiayin
    Hu, Yong-Sheng
    Wolverton, Christopher
    Li, Hong
    Chen, Liquan
    Janek, Juergen
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (08): : 7427 - 7437
  • [10] Regulating Na Occupation in P2-Type Layered Oxide Cathode for All-Climate Sodium-Ion Batteries
    Liu, Siying
    Wan, Jing
    Ou, Mingyang
    Zhang, Wen
    Chang, Miao
    Cheng, Fangyuan
    Xu, Yue
    Sun, Shixiong
    Luo, Cheng
    Yang, Kai
    Fang, Chun
    Han, Jiantao
    ADVANCED ENERGY MATERIALS, 2023, 13 (11)