Weakly stretch Finsler metrics

被引:20
|
作者
Najafi, Behzad [1 ]
Tayebi, Akbar [2 ]
机构
[1] Amirkabir Univ, Dept Math & Comp Sci, Tehran, Iran
[2] Univ Qom, Fac Sci, Dept Math, Qom, Iran
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2017年 / 91卷 / 3-4期
关键词
stretch metric; Landsberg metric; generalized Berwald metric; Randers metric; flag curvature; RIEMANNIAN CURVATURE PROPERTIES; ISOTROPIC BERWALD METRICS; S-CURVATURE; LANDSBERG MANIFOLDS; FLAG CURVATURE; BETA)-METRICS; CONNECTIONS; (ALPHA; SPACES; TENSOR;
D O I
10.5486/PMD.2017.7761
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new non-Riemannian quantity named mean stretch curvature. A Finsler metric with vanishing mean stretch curvature is called weakly stretch metric. This class of Finsler metrics contains the class of stretch metrics. First, we show that every complete weakly stretch Finsler manifold with bounded mean Cartan torsion is a weakly Landsberg manifold. Then, we prove a rigidity theorem stating that every compact weakly stretch manifold with negative flag curvature reduces to a Riemannian manifold. Finally, we show that every generalized Berwald Randers metric with a Killing form beta with respect to alpha is a weakly stretch metric if and only if it is a Berwald metric.
引用
收藏
页码:441 / 454
页数:14
相关论文
共 50 条
  • [21] ON THE STRECH CURVATURE OF HOMOGENEOUS FINSLER METRICS
    Kamelaei, Farzaneh
    Tayebi, Akbar
    Najafi, Behzad
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (05): : 1143 - 1153
  • [22] On a class of projectively flat (α, β)-Finsler metrics
    Binh, Tran Quoc
    Cheng, Xinyue
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2008, 73 (3-4): : 391 - 400
  • [23] On a class of projectively flat Finsler metrics
    Xia, Qiaoling
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2016, 44 : 1 - 16
  • [24] On a class of projectively flat Finsler metrics with weakly isotropic flag curvature
    Chen, Guangzu
    Cheng, Xinyue
    Yuan, Mingao
    PERIODICA MATHEMATICA HUNGARICA, 2013, 67 (02) : 155 - 166
  • [25] Four families of projectively flat Finsler metrics with K=1 and their non-Riemannian curvature properties
    Tayebi, A.
    Razgordani, M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1463 - 1485
  • [26] A Class of Finsler Metrics with Bounded Cartan Torsion
    Mo, Xiaohuan
    Zhou, Linfeng
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (01): : 122 - 132
  • [27] Reduction of certain projectively flat Finsler metrics
    Zheng, Daxiao
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2019, 65 : 160 - 175
  • [28] On Finsler metrics with vanishing S-curvature
    Tayabi, Akbar
    Sadeghi, Hassan
    Peyghan, Esmaeil
    TURKISH JOURNAL OF MATHEMATICS, 2014, 38 (01) : 154 - 165
  • [29] NEW TOOLS IN FINSLER GEOMETRY: STRETCH AND RICCI SOLITONS
    Crasmareanu, Mircea
    MATHEMATICAL REPORTS, 2014, 16 (01): : 83 - 93
  • [30] Some constructions of projectively flat Finsler metrics
    Mo Kwhuan
    Shen Zhongmin
    Yang Chunhong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (05): : 703 - 714