Weakly stretch Finsler metrics

被引:20
|
作者
Najafi, Behzad [1 ]
Tayebi, Akbar [2 ]
机构
[1] Amirkabir Univ, Dept Math & Comp Sci, Tehran, Iran
[2] Univ Qom, Fac Sci, Dept Math, Qom, Iran
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2017年 / 91卷 / 3-4期
关键词
stretch metric; Landsberg metric; generalized Berwald metric; Randers metric; flag curvature; RIEMANNIAN CURVATURE PROPERTIES; ISOTROPIC BERWALD METRICS; S-CURVATURE; LANDSBERG MANIFOLDS; FLAG CURVATURE; BETA)-METRICS; CONNECTIONS; (ALPHA; SPACES; TENSOR;
D O I
10.5486/PMD.2017.7761
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new non-Riemannian quantity named mean stretch curvature. A Finsler metric with vanishing mean stretch curvature is called weakly stretch metric. This class of Finsler metrics contains the class of stretch metrics. First, we show that every complete weakly stretch Finsler manifold with bounded mean Cartan torsion is a weakly Landsberg manifold. Then, we prove a rigidity theorem stating that every compact weakly stretch manifold with negative flag curvature reduces to a Riemannian manifold. Finally, we show that every generalized Berwald Randers metric with a Killing form beta with respect to alpha is a weakly stretch metric if and only if it is a Berwald metric.
引用
收藏
页码:441 / 454
页数:14
相关论文
共 50 条
  • [1] On Homogeneous Weakly Stretch Finsler Metrics
    Vishkaei, Hosein Tondro
    Toomanian, Megerdich
    Katamy, Reza Chavosh
    Nadjafikhah, Mehdi
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (01) : 19 - 30
  • [2] On Homogeneous Weakly Stretch Finsler Metrics
    Hosein Tondro Vishkaei
    Megerdich Toomanian
    Reza Chavosh Katamy
    Mehdi Nadjafikhah
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 19 - 30
  • [3] On weakly stretch Randers metrics
    Chen, Guangzu
    Liu, Lihong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
  • [4] ON MEAN STRETCH CURVATURES OF FINSLER METRICS
    Tayebi, A.
    Fachfouri, M.
    Jazer, N.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2020, 89 (02): : 335 - 342
  • [5] Weakly Douglas Finsler metrics
    Atashafrouz, M.
    Najafi, B.
    Tayebi, A.
    PERIODICA MATHEMATICA HUNGARICA, 2020, 81 (02) : 194 - 200
  • [6] On a class of stretch metrics in Finsler Geometry
    Tayebi, Akbar
    Sadeghi, Hassan
    ARABIAN JOURNAL OF MATHEMATICS, 2019, 8 (02) : 153 - 160
  • [7] On a class of weakly Einstein Finsler metrics
    Shen, Zhongmin
    Yang, Guojun
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (02) : 773 - 790
  • [8] On weakly stretch Kropina metrics
    Tayebi, A.
    Barati, F.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 93
  • [9] ON WEAKLY STRETCH RANDERS METRICS
    Tayebi, Akbar
    Ghasemi, Asma
    Sabzevari, Mehdi
    MATEMATICKI VESNIK, 2021, 73 (03): : 174 - 182
  • [10] On strongly convex weakly Kahler-Finsler metrics of constant flag curvature
    Xia, Hongchuan
    Zhong, Chunping
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (02) : 891 - 912