Monolithic All-Perovskite Tandem Solar Cells with Minimized Optical and Energetic Losses

被引:72
作者
Datta, Kunal [1 ,2 ]
Wang, Junke [1 ,2 ]
Zhang, Dong [1 ,2 ,3 ]
Zardetto, Valerio [3 ]
Remmerswaal, Willemijn H. M. [1 ,2 ]
Weijtens, Christ H. L. [1 ,2 ]
Wienk, Martijn M. [1 ,2 ]
Janssen, Rene A. J. [1 ,2 ,4 ]
机构
[1] Eindhoven Univ Technol, Mol Mat & Nanosyst, Partner Solliance, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Inst Complex Mol Syst, Partner Solliance, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] TNO, Partner Solliance, High Tech Campus 21, NL-5656 AE Eindhoven, Netherlands
[4] Dutch Inst Fundamental Energy Res, De Zaale 20, NL-5612 AJ Eindhoven, Netherlands
关键词
metal-halide perovskites; optical modeling; passivation; tandem solar cells; MU-S; LUMINESCENCE; SEGREGATION; EFFICIENCY;
D O I
10.1002/adma.202110053
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Perovskite-based multijunction solar cells are a potentially cost-effective technology that can help surpass the efficiency limits of single-junction devices. However, both mixed-halide wide-bandgap perovskites and lead-tin narrow-bandgap perovskites suffer from non-radiative recombination due to the formation of bulk traps and interfacial recombination centers which limit the open-circuit voltage of sub-cells and consequently of the integrated tandem. Additionally, the complex optical stack in a multijunction solar cell can lead to losses stemming from parasitic absorption and reflection of incident light which aggravates the current mismatch between sub-cells, thereby limiting the short-circuit current density of the tandem. Here, an integrated all-perovskite tandem solar cell is presented that uses surface passivation strategies to reduce non-radiative recombination at the perovskite-fullerene interfaces, yielding a high open-circuit voltage. By using optically benign transparent electrode and charge-transport layers, absorption in the narrow-bandgap sub-cell is improved, leading to an improvement in current-matching between sub-cells. Collectively, these strategies allow the development of a monolithic tandem solar cell exhibiting a power-conversion efficiency of over 23%.
引用
收藏
页数:8
相关论文
共 39 条
[1]   Maximizing and stabilizing luminescence from halide perovskites with potassium passivation [J].
Abdi-Jalebi, Mojtaba ;
Andaji-Garmaroudi, Zahra ;
Cacovich, Stefania ;
Stavrakas, Camille ;
Philippe, Bertrand ;
Richter, Johannes M. ;
Alsari, Mejd ;
Booker, Edward P. ;
Hutter, Eline M. ;
Pearson, Andrew J. ;
Lilliu, Samuele ;
Savenije, Tom J. ;
Rensmo, Hakan ;
Divitini, Giorgio ;
Ducati, Caterina ;
Friend, Richard H. ;
Stranks, Samuel D. .
NATURE, 2018, 555 (7697) :497-+
[2]   Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction [J].
Al-Ashouri, Amran ;
Kohnen, Eike ;
Li, Bor ;
Magomedov, Artiom ;
Hempel, Hannes ;
Caprioglio, Pietro ;
Marquez, Jose A. ;
Vilches, Anna Belen Morales ;
Kasparavicius, Ernestas ;
Smith, Joel A. ;
Phung, Nga ;
Menzel, Dorothee ;
Grischek, Max ;
Kegelmann, Lukas ;
Skroblin, Dieter ;
Gollwitzer, Christian ;
Malinauskas, Tadas ;
Jost, Marko ;
Matic, Gasper ;
Rech, Bernd ;
Schlatmann, Rutger ;
Topic, Marko ;
Korte, Lars ;
Abate, Antonio ;
Stannowski, Bernd ;
Neher, Dieter ;
Stolterfoht, Martin ;
Unold, Thomas ;
Getautis, Vytautas ;
Albrecht, Steve .
SCIENCE, 2020, 370 (6522) :1300-+
[3]   Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells [J].
Al-Ashouri, Amran ;
Magomedov, Artiom ;
Ross, Marcel ;
Jost, Marko ;
Talaikis, Martynas ;
Chistiakova, Ganna ;
Bertram, Tobias ;
Marquez, Jose A. ;
Kohnen, Eike ;
Kasparavicius, Ernestas ;
Levcenco, Sergiu ;
Gil-Escrig, Lidon ;
Hages, Charles J. ;
Schlatmann, Rutger ;
Rech, Bernd ;
Malinauskas, Tadas ;
Unold, Thomas ;
Kaufmann, Christian A. ;
Korte, Lars ;
Niaura, Gediminas ;
Getautis, Vytautas ;
Albrecht, Steve .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (11) :3356-3369
[4]   Zr-Doped Indium Oxide (IZRO) Transparent Electrodes for Perovskite-Based Tandem Solar Cells [J].
Aydin, Erkan ;
De Bastiani, Michele ;
Yang, Xinbo ;
Sajjad, Muhammad ;
Aljamaan, Faisal ;
Smirnov, Yury ;
Hedhili, Mohamed Nejib ;
Liu, Wenzhu ;
Allen, Thomas G. ;
Xu, Lujia ;
Van Kerschaver, Emmanuel ;
Morales-Masis, Monica ;
Schwingenschloegl, Udo ;
De Wolf, Stefaan .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (25)
[5]   Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency [J].
Braly, Ian L. ;
deQilettes, Dane W. ;
Pazos-Outon, Luis M. ;
Burke, Sven ;
Ziffer, Mark E. ;
Ginger, David S. ;
Hillhouse, Hugh W. .
NATURE PHOTONICS, 2018, 12 (06) :355-+
[6]   Effect of Light-Induced Halide Segregation on the Performance of Mixed-Halide Perovskite Solar Cells [J].
Datta, Kunal ;
van Gorkom, Bas T. ;
Chen, Zehua ;
Dyson, Matthew J. ;
van der Pol, Tom P. A. ;
Meskers, Stefan C. J. ;
Tao, Shuxia ;
Bobbert, Peter A. ;
Wienk, Martijn M. ;
Janssen, Rene A. J. .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (07) :6650-6658
[7]   Six-junction III-V solar cells with 47.1% conversion efficiency under 143 Suns concentration [J].
Geisz, John F. ;
France, Ryan M. ;
Schulte, Kevin L. ;
Steiner, Myles A. ;
Norman, Andrew G. ;
Guthrey, Harvey L. ;
Young, Matthew R. ;
Song, Tao ;
Moriarty, Thomas .
NATURE ENERGY, 2020, 5 (04) :326-+
[8]   Record Open-Circuit Voltage Wide-Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure [J].
Gharibzadeh, Saba ;
Nejand, Bahram Abdollahi ;
Jakoby, Marius ;
Abzieher, Tobias ;
Hauschild, Dirk ;
Moghadamzadeh, Somayeh ;
Schwenzer, Jonas A. ;
Brenner, Philipp ;
Schmager, Raphael ;
Haghighirad, Amir Abbas ;
Weinhardt, Lothar ;
Lemmer, Uli ;
Richards, Bryce S. ;
Howard, Ian A. ;
Paetzold, Ulrich W. .
ADVANCED ENERGY MATERIALS, 2019, 9 (21)
[9]   Pyrene-Based Small-Molecular Hole Transport Layers for Efficient and Stable Narrow-Bandgap Perovskite Solar Cells [J].
Gomez, Paula ;
Wang, Junke ;
Mas-Montoya, Miriam ;
Bautista, Delia ;
Weijtens, Christ H. L. ;
Curiel, David ;
Janssen, Rene A. J. .
SOLAR RRL, 2021, 5 (10)
[10]  
Green E.D., 2021, PROG PHOTOVOLTAICS, V29, P657