Quantum Optical Experiments Modeled by Long Short-Term Memory

被引:7
|
作者
Adler, Thomas [1 ]
Erhard, Manuel [2 ,3 ,8 ]
Krenn, Mario [4 ,5 ,6 ,9 ]
Brandstetter, Johannes [1 ,10 ]
Kofler, Johannes [1 ]
Hochreiter, Sepp [1 ,7 ]
机构
[1] Johannes Kepler Univ Linz, Inst Machine Learning, ELLIS Unit Linz, LIT AI Lab, A-4040 Linz, Austria
[2] Univ Vienna, Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-1090 Vienna, Austria
[3] Univ Vienna, Vienna Ctr Quantum Sci & Technol, A-1090 Vienna, Austria
[4] Univ Toronto, Dept Chem, Toronto, ON M5G 1M1, Canada
[5] Vector Inst Artificial Intelligence, Toronto, ON M5G 1M1, Canada
[6] Univ Toronto, Dept Comp Sci, Toronto, ON M5G 1M1, Canada
[7] Inst Adv Res Artificial Intelligence IARAI, Landstrasser Hauptstr 5, A-1030 Vienna, Austria
[8] Quantum Technol Labs GmbH, Wohllebengasse 4-4, A-1040 Vienna, Austria
[9] Max Planck Inst Sci Light, D-91058 Erlangen, Germany
[10] Univ Amsterdam, Fac Sci, Informat Inst, NL-1090 GH Amsterdam, Netherlands
基金
奥地利科学基金会;
关键词
quantum optics; multipartite high-dimensional entanglement; supervised machine learning; long short-term memory; ENTANGLEMENT;
D O I
10.3390/photonics8120535
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate how machine learning is able to model experiments in quantum physics. Quantum entanglement is a cornerstone for upcoming quantum technologies, such as quantum computation and quantum cryptography. Of particular interest are complex quantum states with more than two particles and a large number of entangled quantum levels. Given such a multiparticle high-dimensional quantum state, it is usually impossible to reconstruct an experimental setup that produces it. To search for interesting experiments, one thus has to randomly create millions of setups on a computer and calculate the respective output states. In this work, we show that machine learning models can provide significant improvement over random search. We demonstrate that a long short-term memory (LSTM) neural network can successfully learn to model quantum experiments by correctly predicting output state characteristics for given setups without the necessity of computing the states themselves. This approach not only allows for faster search, but is also an essential step towards the automated design of multiparticle high-dimensional quantum experiments using generative machine learning models.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Personalized Customer Churn Analysis with Long Short-Term Memory
    Bayrak, Ahmet Tugrul
    Aktas, Asmin Alev
    Tunali, Okan
    Susuz, Orkun
    Abbak, Nese
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2021), 2021, : 79 - 82
  • [32] Deep Long Short-Term Memory Networks for Speech Recognition
    Chien, Jen-Tzung
    Misbullah, Alim
    2016 10TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2016,
  • [33] Short-Term Load Forecasting using Long Short Term Memory Optimized by Genetic Algorithm
    Zulfiqar, Muhammad
    Rasheed, Muhammad Babar
    2022 IEEE SUSTAINABLE POWER AND ENERGY CONFERENCE (ISPEC), 2022,
  • [34] Deep Bi-directional Long Short-Term Memory Model for Short-Term Traffic Flow Prediction
    Wang, Jingyuan
    Hu, Fei
    Li, Li
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT V, 2017, 10638 : 306 - 316
  • [35] A short-term water demand forecasting model using multivariate long short-term memory with meteorological data
    Zanfei, Ariele
    Brentan, Bruno Melo
    Menapace, Andrea
    Righetti, Maurizio
    JOURNAL OF HYDROINFORMATICS, 2022, 24 (05) : 1053 - 1065
  • [36] ECG Forecasting System Based on Long Short-Term Memory
    Zacarias, Henriques
    Marques, Joao Alexandre Lobo
    Felizardo, Virginie
    Pourvahab, Mehran
    Garcia, Nuno M.
    BIOENGINEERING-BASEL, 2024, 11 (01):
  • [37] Fast Genetic Algorithm for Long Short-Term Memory Optimization
    Girsang, Abba Suganda
    Tanjung, Daniel
    ENGINEERING LETTERS, 2022, 30 (02)
  • [38] Hybrid Forecasting Model for Short-Term Wind Power Prediction Using Modified Long Short-Term Memory
    Son, Namrye
    Yang, Seunghak
    Na, Jeongseung
    ENERGIES, 2019, 12 (20)
  • [39] Short-term forecasting electricity load by long short-term memory and reinforcement learning for optimization of hyper-parameters
    Nguyen, Ngoc Anh
    Dang, Tien Dat
    Verdu, Elena
    Solanki, Vijender Kumar
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (05) : 1729 - 1746
  • [40] Short-term power prediction of photovoltaic power station based on long short-term memory-back-propagation
    Hua, Chi
    Zhu, Erxi
    Kuang, Liang
    Pi, Dechang
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2019, 15 (10)