Conformal structures and twistors in the paravector model of spacetime

被引:16
作者
Da Rocha, R.
Vaz, J., Jr.
机构
[1] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil
[2] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil
[3] Dept Math Appl, IMECC, BR-60651308 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
twistors; conformal maps; Clifford algebras;
D O I
10.1142/S0219887807002193
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Some properties of the Clifford algebras Cl-3,Cl-0, Cl-1,Cl-3, Cl-4,Cl-1 similar or equal to C circle times Cl-1,Cl-3 and Cl-2,Cl-4 are presented, and three isomorphisms between the Dirac-Clifford algebra C circle times Cl-1,Cl-3 and Cl-4,Cl-1 are exhibited, in order to construct conformal maps and twistors, using the paravector model of spacetime. The isomorphism between the twistor space inner product isometry group SU( 2,2) and the group $pin(+)(2,4) is also investigated, in the light of a suitable isomorphism between C circle times Cl-1,Cl-3 and Cl-4,Cl-1. After reviewing the conformal spacetime structure, conformal maps are described in Minkowski spacetime as the twisted adjoint representation of $ pin(+)(2,4), acting on paravectors. Twistors are then presented via the paravector model of Clifford algebras and related to conformal maps in the Clifford algebra over the Lorentzian R-4,(1) spacetime.We construct twistors in Minkowski spacetime as algebraic spinors associated with the Dirac-Clifford algebra C circle times Cl-1,Cl-3 using one lower spacetime dimension than standard Clifford algebra formulations, since for this purpose, the Clifford algebra over R-4,R-1 is also used to describe conformal maps, instead of R-2,(4). Our formalism sheds some new light on the use of the paravector model and generalizations.
引用
收藏
页码:547 / 576
页数:30
相关论文
共 49 条
[1]   CLIFFORD-ALGEBRA APPROACH TO TWISTORS [J].
ABLAMOWICZ, R ;
OZIEWICZ, Z ;
RZEWUSKI, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (02) :231-242
[2]  
[Anonymous], SPINORS TWISTORS CLI
[3]  
Atiyah M.F., 1964, TOPOLOGY S1, V3, P3, DOI 10.1016/0040-9383(64)90003-5
[4]   Twistor transform in d dimensions and a unifying role for twistors [J].
Bars, I ;
Picón, M .
PHYSICAL REVIEW D, 2006, 73 (06)
[5]  
BARS I, 2006, PHYS REV D, V73
[6]  
BAYLIS W, 1995, CLIFFORD GEOMETRIC A, V1, P237
[7]  
Baylis WE, 2000, PROG PHYSIC, V18, P3
[8]  
BENN IM, 1988, INTRO SPINORS GEOMET
[9]   Alternative string theory in twistor space for N=4 super-Yang-Mills theory -: art. no. 011601 [J].
Berkovits, N .
PHYSICAL REVIEW LETTERS, 2004, 93 (01) :011601-1
[10]   Conformal supergravity in twistor-string theory [J].
Berkovits, N ;
Witten, E .
JOURNAL OF HIGH ENERGY PHYSICS, 2004, (08) :197-232