Bayesian uncertainty quantification for data-driven equation learning

被引:13
作者
Martina-Perez, Simon [1 ]
Simpson, Matthew J. [2 ]
Baker, Ruth E. [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld, Australia
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2021年 / 477卷 / 2254期
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
mathematical modelling; equation learning; uncertainty quantification; VARIABLE SELECTION; MODEL SELECTION; SYSTEMS; FRAMEWORK; BIOLOGY; IDENTIFIABILITY; SENSITIVITY;
D O I
10.1098/rspa.2021.0426
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Equation learning aims to infer differential equation models from data. While a number of studies have shown that differential equation models can be successfully identified when the data are sufficiently detailed and corrupted with relatively small amounts of noise, the relationship between observation noise and uncertainty in the learned differential equation models remains unexplored. We demonstrate that for noisy datasets there exists great variation in both the structure of the learned differential equation models and their parameter values. We explore how to exploit multiple datasets to quantify uncertainty in the learned models, and at the same time draw mechanistic conclusions about the target differential equations. We showcase our results using simulation data from a relatively straightforward agent-based model (ABM) which has a well-characterized partial differential equation description that provides highly accurate predictions of averaged ABM behaviours in relevant regions of parameter space. Our approach combines equation learning methods with Bayesian inference approaches so that a quantification of uncertainty can be given by the posterior parameter distribution of the learned model.
引用
收藏
页数:27
相关论文
共 42 条
[11]   Systems biology (un)certainties [J].
Kirk, P. D. W. ;
Babtie, A. C. ;
Stumpf, M. P. H. .
SCIENCE, 2015, 350 (6259) :386-388
[12]  
Kloek T., 1970, POSTERIOR PROBABILIT
[13]   Sensitivity, robustness, and identifiability in stochastic chemical kinetics models [J].
Komorowski, Michal ;
Costa, Maria J. ;
Rand, David A. ;
Stumpf, Michael P. H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (21) :8645-8650
[14]   Biologically-informed neural networks guide mechanistic modeling from sparse experimental data [J].
Lagergren, John H. ;
Nardini, John T. ;
Baker, Ruth E. ;
Simpson, Matthew J. ;
Flores, Kevin B. .
PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (12)
[15]   Learning partial differential equations for biological transport models from noisy spatio-temporal data [J].
Lagergren, John H. ;
Nardini, John T. ;
Michael Lavigne, G. ;
Rutter, Erica M. ;
Flores, Kevin B. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2234)
[16]  
Li J, 2020, AAAI CONF ARTIF INTE, V34, P767
[17]   A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation [J].
Liepe, Juliane ;
Kirk, Paul ;
Filippi, Sarah ;
Toni, Tina ;
Barnes, Chris P. ;
Stumpf, Michael P. H. .
NATURE PROTOCOLS, 2014, 9 (02) :439-456
[18]   Driving the Model to Its Limit: Profile Likelihood Based Model Reduction [J].
Maiwald, Tim ;
Hass, Helge ;
Steiert, Bernhard ;
Vanlier, Joep ;
Engesser, Raphael ;
Raue, Andreas ;
Kipkeew, Friederike ;
Bock, Hans H. ;
Kaschek, Daniel ;
Kreutz, Clemens ;
Timmer, Jens .
PLOS ONE, 2016, 11 (09)
[19]   A methodology for performing global uncertainty and sensitivity analysis in systems biology [J].
Marino, Simeone ;
Hogue, Ian B. ;
Ray, Christian J. ;
Kirschner, Denise E. .
JOURNAL OF THEORETICAL BIOLOGY, 2008, 254 (01) :178-196
[20]  
MITCHELL TJ, 1988, J AM STAT ASSOC, V83, P1023, DOI 10.2307/2290129