Bayesian uncertainty quantification for data-driven equation learning

被引:13
作者
Martina-Perez, Simon [1 ]
Simpson, Matthew J. [2 ]
Baker, Ruth E. [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld, Australia
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2021年 / 477卷 / 2254期
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
mathematical modelling; equation learning; uncertainty quantification; VARIABLE SELECTION; MODEL SELECTION; SYSTEMS; FRAMEWORK; BIOLOGY; IDENTIFIABILITY; SENSITIVITY;
D O I
10.1098/rspa.2021.0426
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Equation learning aims to infer differential equation models from data. While a number of studies have shown that differential equation models can be successfully identified when the data are sufficiently detailed and corrupted with relatively small amounts of noise, the relationship between observation noise and uncertainty in the learned differential equation models remains unexplored. We demonstrate that for noisy datasets there exists great variation in both the structure of the learned differential equation models and their parameter values. We explore how to exploit multiple datasets to quantify uncertainty in the learned models, and at the same time draw mechanistic conclusions about the target differential equations. We showcase our results using simulation data from a relatively straightforward agent-based model (ABM) which has a well-characterized partial differential equation description that provides highly accurate predictions of averaged ABM behaviours in relevant regions of parameter space. Our approach combines equation learning methods with Bayesian inference approaches so that a quantification of uncertainty can be given by the posterior parameter distribution of the learned model.
引用
收藏
页数:27
相关论文
共 42 条
  • [1] Optimization and Control of Agent-Based Models in Biology: A Perspective
    An, G.
    Fitzpatrick, B. G.
    Christley, S.
    Federico, P.
    Kanarek, A.
    Neilan, R. Miller
    Oremland, M.
    Salinas, R.
    Laubenbacher, R.
    Lenhart, S.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2017, 79 (01) : 63 - 87
  • [2] Arriola L., 2009, Mathematical and Statistical Estimation Approaches in Epidemiology, P195, DOI [DOI 10.1007/978-90-481-2313-1_10, 10.1007/978-90-481-2313-110, DOI 10.1007/978-90-481-2313-110, 10.1007/978-90-481-2313-1\_10]
  • [3] Correcting mean-field approximations for birth-death-movement processes
    Baker, Ruth E.
    Simpson, Matthew J.
    [J]. PHYSICAL REVIEW E, 2010, 82 (04):
  • [4] A stochastic model for wound healing
    Callaghan, T
    Khain, E
    Sander, LM
    Ziff, RM
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2006, 122 (05) : 909 - 924
  • [5] Random walk models in biology
    Codling, Edward A.
    Plank, Michael J.
    Benhamou, Simon
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2008, 5 (25) : 813 - 834
  • [6] Discovery of Physics From Data: Universal Laws and Discrepancies
    de Silva, Brian M.
    Higdon, David M.
    Brunton, Steven L.
    Kutz, J. Nathan
    [J]. FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2020, 3
  • [7] Uncertainty quantification, propagation and characterization by Bayesian analysis combined with global sensitivity analysis applied to dynamical intracellular pathway models
    Eriksson, Olivia
    Jauhiainen, Alexandra
    Sasane, Sara Maad
    Kramer, Andrei
    Nair, Anu G.
    Sartorius, Carolina
    Kotaleski, Jeanette Hellgren
    [J]. BIOINFORMATICS, 2019, 35 (02) : 284 - 292
  • [8] Spike and slab variable selection: Frequentist and Bayesian strategies
    Ishwaran, H
    Rao, JS
    [J]. ANNALS OF STATISTICS, 2005, 33 (02) : 730 - 773
  • [9] Sparse identification of nonlinear dynamics for model predictive control in the low-data limit
    Kaiser, E.
    Kutz, J. N.
    Brunton, S. L.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2219):
  • [10] Efficient methods for studying stochastic disease and population dynamics
    Keeling, M. J.
    Ross, J. V.
    [J]. THEORETICAL POPULATION BIOLOGY, 2009, 75 (2-3) : 133 - 141