Impact vaporization of planetesimal cores in the late stages of planet formation

被引:65
|
作者
Kraus, Richard G. [1 ,2 ]
Root, Seth [3 ]
Lemke, Raymond W. [4 ]
Stewart, Sarah T. [1 ,5 ]
Jacobsen, Stein B. [1 ]
Mattsson, Thomas R.
机构
[1] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
[2] Lawrence Livermore Natl Lab, Shock Phys Grp, Livermore, CA 94551 USA
[3] Sandia Natl Labs, Dynam Mat Properties Grp, Albuquerque, NM 87185 USA
[4] Sandia Natl Labs, High Energy Dens Phys Theory, Albuquerque, NM 87185 USA
[5] Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA
关键词
THERMOPHYSICAL PROPERTIES; LATE ACCRETION; EARTH; MOON; IRON; CONSTRAINTS; SILICATE; METAL;
D O I
10.1038/NGEO2369
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Differentiated planetesimals delivered iron-rich material to the Earth and Moon in high-velocity collisions at the end stages of accretion. The physical process of accreting this late material has implications for the geochemical evolution of the Earth-Moon system and the timing of Earth's core formation(1-3). However, the fraction of a planetesimal's iron core that is vaporized by an impact is not well constrained as a result of iron's poorly understood equation of state. Here we determine the entropy in the shock state of iron using a recently developed shock-and-release experimental technique implemented at the Sandia National Laboratory Z-Machine. We find that the shock pressure required to vaporize iron is 507 (+65, -85) GPa, which is lower than the previous theoretical estimate(4) (887 GPa) and readily achieved by the high velocity impacts at the end stages of accretion. We suggest that impact vaporization of planetesimal cores dispersed iron over the surface of the growing Earth and enhanced chemical equilibration with the mantle. In addition, the comparatively low abundance of highly siderophile elements in the lunar mantle and crust(5-8) can be explained by the retention of a smaller fraction of vaporized planetesimal iron on the Moon, as compared with Earth, due to the Moon's lower escape velocity.
引用
收藏
页码:269 / 272
页数:4
相关论文
共 50 条
  • [1] Impact vaporization of planetesimal cores in the late stages of planet formation
    Kraus R.G.
    Root S.
    Lemke R.W.
    Stewart S.T.
    Jacobsen S.B.
    Mattsson T.R.
    Nature Geoscience, 2015, 8 (4) : 269 - 272
  • [2] Planetesimal fragmentation and giant planet formation
    Guilera, O. M.
    de Elia, G. C.
    Brunini, A.
    Santamaria, P. J.
    ASTRONOMY & ASTROPHYSICS, 2014, 565
  • [3] Planetesimal fragmentation and giant planet formation
    20142217759016
    1600, EDP Sciences (565):
  • [4] The influence of planetesimal fragmentation on planet formation
    Kaufmann, Nicolas
    Alibert, Yann
    ASTRONOMY & ASTROPHYSICS, 2023, 676
  • [5] Planetesimal fragmentation and giant planet formation: the role of planet migration
    Guilera, O. M.
    Swoboda, D.
    Alibert, Y.
    de Elia, G. C.
    Santamaria, P. J.
    Brunini, A.
    COMPLEX PLANETARY SYSTEMS, 2014, 9 (310): : 204 - 207
  • [6] Analytic Approach to the Late Stages of Giant Planet Formation
    Adams, Fred C.
    Batygin, Konstantin
    ASTROPHYSICAL JOURNAL, 2022, 934 (02):
  • [7] Oligarchic planetesimal accretion and giant planet formation
    Fortier, A.
    Benvenuto, O. G.
    Brunini, A.
    ASTRONOMY & ASTROPHYSICS, 2007, 473 (01) : 311 - 322
  • [8] Planetesimal and planet formation in transient dust traps
    Sandor, Zs.
    Guilera, O. M.
    Regaly, Zs.
    Lyra, W.
    ASTRONOMY & ASTROPHYSICS, 2024, 686
  • [9] Planet formation models: the interplay with the planetesimal disc
    Fortier, A.
    Alibert, Y.
    Carron, F.
    Benz, W.
    Dittkrist, K. -M.
    ASTRONOMY & ASTROPHYSICS, 2013, 549
  • [10] Oligarchic planetesimal accretion and giant planet formation
    Fortier, A.
    Benvenuto, O.G.
    Brunini, A.
    Astronomy and Astrophysics, 1600, 473 (01): : 311 - 322