Basins of attraction for a quadratic coquaternionic map

被引:7
作者
Irene Falcao, M. [1 ,3 ]
Miranda, Fernando [1 ,3 ]
Severino, Ricardo [3 ]
Joana Soares, M. [2 ,3 ]
机构
[1] Univ Minho, Ctr Matemat, CMAT, Braga, Portugal
[2] Univ Minho, NIPE, Braga, Portugal
[3] Univ Minho, Dept Matemat & Aplicacoes, Braga, Portugal
关键词
Iteration of maps; Coquaternions; Attracting cycles; Basins of attraction; DYNAMICS; QUATERNIONS; ROTATIONS; ITERATION;
D O I
10.1016/j.chaos.2017.09.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the extension, to the algebra of coquaternions, of a complex quadratic map with a real super-attractive 8-cycle. We establish that, in addition to the real cycle, this new map has sets of non-isolated periodic points of period 8, forming four attractive 8-cycles. Here, the cycles are to be interpreted as cycles of sets and an appropriate notion of attractivity is used. Some characteristics of the basins of attraction of the five attracting 8-cycles are discussed and plots revealing the intertwined nature of these basins are shown. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:716 / 724
页数:9
相关论文
共 32 条
  • [1] SPLIT QUATERNION MATRICES
    Alagoz, Yasemin
    Oral, Kursat Hakan
    Yuce, Salim
    [J]. MISKOLC MATHEMATICAL NOTES, 2012, 13 (02) : 223 - 232
  • [2] [Anonymous], J PHYS A
  • [3] Split quaternions and semi-Euclidean projective spaces
    Ata, Erhan
    Yayli, Yusuf
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 41 (04) : 1910 - 1915
  • [4] AULBACH B, 1984, LECT NOTES MATH, V1058, pU1
  • [5] ITERATION OF QUADRATIC MAPS ON MATRIX ALGEBRAS
    Baptista, Alexandra Nascimento
    Ramos, Carlos Correia
    Martins, Nuno
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (06):
  • [6] Beardon A., 2000, GRADUATE TEXTS MATH
  • [7] Iteration of quaternion functions
    Bedding, S
    Briggs, K
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1996, 103 (08) : 654 - 664
  • [8] ITERATION OF QUATERNION MAPS
    BEDDING, S
    BRIGGS, K
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (03): : 877 - 881
  • [9] Generalized Mandelbrot sets for meromorphic complex and quaternionic maps
    Buchanan, W
    Gomatam, J
    Steves, B
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08): : 1755 - 1777
  • [10] Cokle J., 1849, PHILOS MAG, V35, P434, DOI DOI 10.1080/14786444908646384