Basins of attraction for a quadratic coquaternionic map

被引:7
作者
Irene Falcao, M. [1 ,3 ]
Miranda, Fernando [1 ,3 ]
Severino, Ricardo [3 ]
Joana Soares, M. [2 ,3 ]
机构
[1] Univ Minho, Ctr Matemat, CMAT, Braga, Portugal
[2] Univ Minho, NIPE, Braga, Portugal
[3] Univ Minho, Dept Matemat & Aplicacoes, Braga, Portugal
关键词
Iteration of maps; Coquaternions; Attracting cycles; Basins of attraction; DYNAMICS; QUATERNIONS; ROTATIONS; ITERATION;
D O I
10.1016/j.chaos.2017.09.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the extension, to the algebra of coquaternions, of a complex quadratic map with a real super-attractive 8-cycle. We establish that, in addition to the real cycle, this new map has sets of non-isolated periodic points of period 8, forming four attractive 8-cycles. Here, the cycles are to be interpreted as cycles of sets and an appropriate notion of attractivity is used. Some characteristics of the basins of attraction of the five attracting 8-cycles are discussed and plots revealing the intertwined nature of these basins are shown. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:716 / 724
页数:9
相关论文
共 32 条
[1]   SPLIT QUATERNION MATRICES [J].
Alagoz, Yasemin ;
Oral, Kursat Hakan ;
Yuce, Salim .
MISKOLC MATHEMATICAL NOTES, 2012, 13 (02) :223-232
[2]  
[Anonymous], J PHYS A
[3]   Split quaternions and semi-Euclidean projective spaces [J].
Ata, Erhan ;
Yayli, Yusuf .
CHAOS SOLITONS & FRACTALS, 2009, 41 (04) :1910-1915
[4]  
AULBACH B, 1984, LECT NOTES MATH, V1058, pU1
[5]   ITERATION OF QUADRATIC MAPS ON MATRIX ALGEBRAS [J].
Baptista, Alexandra Nascimento ;
Ramos, Carlos Correia ;
Martins, Nuno .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (06)
[6]  
Beardon A., 2000, GRADUATE TEXTS MATH
[7]   Iteration of quaternion functions [J].
Bedding, S ;
Briggs, K .
AMERICAN MATHEMATICAL MONTHLY, 1996, 103 (08) :654-664
[8]   ITERATION OF QUATERNION MAPS [J].
BEDDING, S ;
BRIGGS, K .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (03) :877-881
[9]   Generalized Mandelbrot sets for meromorphic complex and quaternionic maps [J].
Buchanan, W ;
Gomatam, J ;
Steves, B .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08) :1755-1777
[10]  
Cokle J., 1849, PHILOS MAG, V35, P434, DOI DOI 10.1080/14786444908646384